
大数据将加速形成新的技术经济范式
“关键生产要素”需要具备三个基本条件,一是成本较低并且相对成本迅速下降,二是在长期内几乎无限的供应能力,三是在整个经济系统中具有广泛的应用前景。围绕大数据技术而发生的移动终端、云计算、物联网等技术的集成应用,完全符合“关键生产要素”的基本特征。
技术经济范式是在一定社会发展阶段,由主导技术推动宏观和微观经济结构和运行模式发展的过程,并由此决定经济生产的范围、规模和水平。在新的技术经济范式形成过程中,占主导地位的科学技术将以革命性的方式迅速实现产业化、市场化,并不断对整个经济结构进行呈几何级数的渗透扩散,并逐渐改变原有的生产方式、管理方式、营销模式以及整个经济增长形态。当前,我国正处在实施创新驱动发展战略的关键时期,以新一代信息技术、生物技术、新能源、新材料为代表新兴技术群正在形成新的技术经济范式。
新技术经济范式形成的关键,在于是否基于主导技术形成了新的“关键生产要素”。这种“关键生产要素”需要具备三个基本条件:一是成本较低并且相对成本迅速下降;二是在长期内几乎无限的供应能力;三是在整个经济系统中具有广泛的应用前景。其中,围绕大数据技术而发生的移动终端、云计算、物联网等技术的集成应用,完全符合“关键生产要素”的基本特征,已经迅速地应用于经济社会发展的各方面,对技术开发、生产加工、商业模式等方面产生了深刻的影响,在新的技术经济范式形成过程中将成为决定性因素之一。这种影响,主要体现在数据资源、研发组织、技术融合和创新链衔接等方面。
大数据的集成分析将大幅度提高创新资源的使用效率。大数据的本质是面向海量数据的数据挖掘,发现隐藏的知识和规律,这为基础优化创新资源配置开辟了新的空间。根据美国麦肯锡公司2013年的报告,充分利用大数据技术能使零售商提高利润率60%以上,使美国医疗保健行业降低成本8%。经过多年的积累,我国形成了大量的科技文献、监测数据等大量科技基础信息。同时,也积累了大量面向市场的科技数据资源,例如技术成果、技术交易数据、高新技术企业、研发机构、大学科技园、科技企业孵化器等数据。这些数据往往形成相对独立、难以探索的数据孤岛,而大数据的信息关联、智能决策等功能,能够对这些分割、离散的数据信息进行集成,并提供智能化、商业化的增值服务。
促进研发活动的去组织化和再组织
化。一方面,与传统以课题组、科研机构为基本单元的研发组织载体相比,社会化的研发组织将更为普遍,伴随移动互联网、社交网络的发展,研发活动的参与者越来越能够以个体的身份脱离学科领域、学术地位、空间等因素的限制,围绕特定主题参与到研究的策划和实施。另一方面,大数据技术将促使研发活动由精细化的单向组织管理走向趋势化的复合组织管理,对全局性预测的准确性和实时性要求更高,特别是对研发数据的在线收集和即时分析,为大规模研发活动的组织和协调提供支持。
促进跨领域的技术和产品研发。以生物医药产业和信息技术的融合为例:在研发环节,很多发达国家正尝试运用信息技术建立“虚拟人”,将药品临床试验的某些阶段虚拟化;针对电子健康档案海量、即时数据的挖掘和分析将有助于招募特定基因型的患者开展临床试验,研发基因导向型的个体化药物,这将大大加快药品研发效率,降低研发费用。在生产流通环节,无线射频识别标签、智能尘埃(超微型传感器)、温度传感器将在药品流通中广泛应用,提高药品流通行业集中度和流通效率。在医疗服务环节,电子病历、智能终端、物联网、网络社交软件等将使有限医疗资源让更多人共享,形成新的医患关系,并推动个体化的医疗服务。这些活动正在促使生物医药、信息技术两类传统意义上边界清晰的领域开始融合,而融合所必需的对海量即时数据的分析处理,都要以大数据、云计算等技术系统为前提。
缩短基础研究、应用开发到创新的进程。大数据带来的管理、检测等流程的优化将大大缩短研发周期。在基础研究方面,对海量数据的预测建模能帮助识别那些具有更高可能性的方案,这在药物分子筛选方面尤为明显。另一个案例来源于英特尔,其采用大数据技术开发的预测分析解决方案,能够收集生产过程中的历史数据,由此带来更快速的芯片研发,并将芯片的测试时间缩短25%。
大数据在促进技术经济范式形成的过程中,需要相应的制度规范和保障。例如,在数据应用方面,既要鼓励科技数据,特别是财政投入形成的数据,实现更大范围、更及时的开放共享,也要通过立法和有效执法加强知识产权保护,注重数据资产的价值,防止数据被滥用,明确界定数据挖掘、利用的权限和范围。在研发组织方面,虽然大数据在构建创新网络上具有明显优势,但也存在一定的局限性。欧盟最近的一项调查认为,在创新网络形成过程中,面对面的交流仍是不可或缺的因素。因此,大数据技术作为一项高效便捷的组织工具,其收集、分析和研判得出的关联机制,需要与学术研讨会、创新创业大赛、创业公开课等常规的、更加具象化的交流沟通方式紧密结合。在促进跨领域、跨环节的融合方面,需要各主管部门依托各类创新示范区、高新区、经济开发区,面向产品、服务、技术标准、合格评定程序等方面,集成各类创新资源开展大数据的试点示范,为大数据产业快速发展提供更加清晰的市场信号。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23