
大数据基金纷涌而至 六大特点可掘金
正在发行的南方大数据300,成为目前第七只大数据基金。在“互联网+”时代背景下,大数据投资俨然成为牛市热潮,为投资者提供了新的投资选择。
从去年3月银河定投宝中证腾安指数基金发行,拉开了大数据基金的序幕,银河定投宝跟踪的指数中证腾安价值100指数由腾讯参与开发,是首只互联网与专业机构联合推出的指数。去年10月份成立的广发百发100跟踪的指数由百度参与编制,并采用百度金融搜索和用户行为的大数据编制而成,也是首只真正采用互联网大数据的指数。今年3月17日,天弘云端生活基金成立,这只基金被称为业内第一只大数据主动投资基金。今年4月份更是有3只大数据基金相继上市发售,掀起一波大数据基金浪潮。4月21日,依托电商大数据指数淘金100产生的第一只电商大数据基金博时招财一号在招财宝平台独家销售。4月22日,南方基金和新浪财经联合出品的大数据100指数基金开始发售,4月27日,博时淘金大数据100基金也上市发售。加上目前正在发行的南方大数据300,目前已经有7只大数据基金。
大数据基金有六大特点,投基者不妨重点关注。
1、依据互联网数据:无论是主动操作品种还是指数型基金,都将来自互联网的大数据作为投资的参考依据之一。互联网大数据相比传统数据而言,基于电商的全样本、实时数据能更直观、实时地反映各行业变化。而且能够反映一些传统数据无法统计的方面,比如投资者情绪、市场热点的变化等。
2、调整更为灵活:跟踪指数调整周期短,一般为一个月,传统指数调整周期大多为半年,且大多数采用等权重投资,避免单一股票对组合的影响,此类基金换股快,个股投资比例小。从已经成立时间较长的银河定投宝和广发100来看,两只基金前十大重仓股持股比例不超过20%,而且前十大重仓股更换率达到80%。
3、大数据的运用不是单一指标:大数据基金实际上是基于多因子模型的一个量化选股。互联网大数据是其选择股票的一个因子,其他的因子大多为市场以及基本面因子,比如百发100指数以财务因子、综合动量因子和搜索因子作为选股模型,淘金100指数则以财务因子、市场因子以及淘宝大数据因子纳入选股模型,大数据100以及300指数选择因子也包含了财务因子、市场因子与大数据因子。
4、大数据来源不同:目前大数据基本来源于三个渠道:电商(淘宝、京东)、门户网站(新浪、腾讯)、搜索网站(百度)。不同渠道的数据特征有所不同,比如,电商的数据代表了真实的成交额,价格走势等,而搜索网站的数据更多的反映了用户的关注点以及情绪因素,而不是实际发生的行为,门户网站的数据也更多的反映了用户关注点和情绪。
5、风格差异大:大数据指数依据的大数据来源、特点不同,量化选股模型不同,造成各个基金的风格、投向不同。即使依据相同大数据的基金风格也差别很大,比如同样依据新浪数据的大数据100和大数据300,前者偏成长,后者偏蓝筹,同样以淘宝大数据为投资依据的博时淘金100和天弘云端生活优选业绩分别为-0.69%和-3.74%,差距也非常大。
6、中长期业绩稳健:从基金成立后业绩表现来看,成立时间较长的基金广发百发100业绩排名持续位于30%左右,银河定投宝业绩排名持续位于40%左右,其余基金成立时间较短,业绩还不稳定,但是在大概率下能够排名在前50%。但是由于大数据基金,尤其是指数型基金持股十分分散,因此在业绩排名上很难排到十分靠前的位置。
我们认为,大数据基金融入了对投资者情绪以及更实时数据的分析,对市场的变化也更敏感,也更具有前瞻性和预测性,从业绩来看,表现较为稳健,但排名也很难十分靠前,同时受到数据的质量、受众、覆盖度、时间等的影响,也受到构建指数的量化模型的影响,大数据对于业绩并不是点石成金的金手指。对于目前日渐火爆的大数据基金,投资者应当存一份理性,在购买时还是需要多了解一下基金的风格、过往业绩表现、大数据的有效性等因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07