京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据基金纷涌而至 六大特点可掘金
正在发行的南方大数据300,成为目前第七只大数据基金。在“互联网+”时代背景下,大数据投资俨然成为牛市热潮,为投资者提供了新的投资选择。
从去年3月银河定投宝中证腾安指数基金发行,拉开了大数据基金的序幕,银河定投宝跟踪的指数中证腾安价值100指数由腾讯参与开发,是首只互联网与专业机构联合推出的指数。去年10月份成立的广发百发100跟踪的指数由百度参与编制,并采用百度金融搜索和用户行为的大数据编制而成,也是首只真正采用互联网大数据的指数。今年3月17日,天弘云端生活基金成立,这只基金被称为业内第一只大数据主动投资基金。今年4月份更是有3只大数据基金相继上市发售,掀起一波大数据基金浪潮。4月21日,依托电商大数据指数淘金100产生的第一只电商大数据基金博时招财一号在招财宝平台独家销售。4月22日,南方基金和新浪财经联合出品的大数据100指数基金开始发售,4月27日,博时淘金大数据100基金也上市发售。加上目前正在发行的南方大数据300,目前已经有7只大数据基金。
大数据基金有六大特点,投基者不妨重点关注。
1、依据互联网数据:无论是主动操作品种还是指数型基金,都将来自互联网的大数据作为投资的参考依据之一。互联网大数据相比传统数据而言,基于电商的全样本、实时数据能更直观、实时地反映各行业变化。而且能够反映一些传统数据无法统计的方面,比如投资者情绪、市场热点的变化等。
2、调整更为灵活:跟踪指数调整周期短,一般为一个月,传统指数调整周期大多为半年,且大多数采用等权重投资,避免单一股票对组合的影响,此类基金换股快,个股投资比例小。从已经成立时间较长的银河定投宝和广发100来看,两只基金前十大重仓股持股比例不超过20%,而且前十大重仓股更换率达到80%。
3、大数据的运用不是单一指标:大数据基金实际上是基于多因子模型的一个量化选股。互联网大数据是其选择股票的一个因子,其他的因子大多为市场以及基本面因子,比如百发100指数以财务因子、综合动量因子和搜索因子作为选股模型,淘金100指数则以财务因子、市场因子以及淘宝大数据因子纳入选股模型,大数据100以及300指数选择因子也包含了财务因子、市场因子与大数据因子。
4、大数据来源不同:目前大数据基本来源于三个渠道:电商(淘宝、京东)、门户网站(新浪、腾讯)、搜索网站(百度)。不同渠道的数据特征有所不同,比如,电商的数据代表了真实的成交额,价格走势等,而搜索网站的数据更多的反映了用户的关注点以及情绪因素,而不是实际发生的行为,门户网站的数据也更多的反映了用户关注点和情绪。
5、风格差异大:大数据指数依据的大数据来源、特点不同,量化选股模型不同,造成各个基金的风格、投向不同。即使依据相同大数据的基金风格也差别很大,比如同样依据新浪数据的大数据100和大数据300,前者偏成长,后者偏蓝筹,同样以淘宝大数据为投资依据的博时淘金100和天弘云端生活优选业绩分别为-0.69%和-3.74%,差距也非常大。
6、中长期业绩稳健:从基金成立后业绩表现来看,成立时间较长的基金广发百发100业绩排名持续位于30%左右,银河定投宝业绩排名持续位于40%左右,其余基金成立时间较短,业绩还不稳定,但是在大概率下能够排名在前50%。但是由于大数据基金,尤其是指数型基金持股十分分散,因此在业绩排名上很难排到十分靠前的位置。
我们认为,大数据基金融入了对投资者情绪以及更实时数据的分析,对市场的变化也更敏感,也更具有前瞻性和预测性,从业绩来看,表现较为稳健,但排名也很难十分靠前,同时受到数据的质量、受众、覆盖度、时间等的影响,也受到构建指数的量化模型的影响,大数据对于业绩并不是点石成金的金手指。对于目前日渐火爆的大数据基金,投资者应当存一份理性,在购买时还是需要多了解一下基金的风格、过往业绩表现、大数据的有效性等因素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06