
销售数据分析模型_数据分析师培训
销售数据分析的重要性已无需赘言,只有通过对销售数据的准确分析我们才有可能真正找准数据变动(增长或下滑)的根本原因,营销专家刘杰称之为“动因”。找准了“动因”也就发现了真正的问题所在,解决问题、发现新的生意机会点才成为可能!那么实际的销售过程中,我们如何才能有效做好数据分析,寻找到真正的“动因”呢?接下来笔者结合一个实际案例阐述一下数据分析的主要维度及如何才能真正找准“动因”。
案例:某糖果企业Y公司南京市场8月份销售业绩较去年同期下滑了100万。
在做销售数据分析的时候,第一个分析的维度就是要看数据变动是来自于哪几个大的品类。回到案例,面对Y公司南京市场8月份销售业绩较同期下滑了100万的数据变动情况,我们首先要确定的是下滑的100万是来自于哪个品类或哪几个品类,每个品类各自的下滑占比是多少,在此基础上进一步分析得出下滑的品类中是哪个规格的产品出现了下滑,从而真正找到造成业绩下滑的“罪魁祸首”。经过维度一的分析我们发现,8月份南京市场销售业绩下滑的100万主要是来自于水果糖和巧克力的下滑,其中水果糖下滑了60万,占比60%,巧克力下滑了40万,占比40%,进一步分析得出,水果糖的下滑主要是来自于128g袋装的下滑,巧克力的下滑主要是来自于散装巧克力的下滑。
销售数据分析的第二个维度是要看引起数据变动的销售区域在哪里?是整体销售区域都出现了下滑,还是局部区域市场出现了下滑?回到案例,南京市场下辖南京城区及江宁、六合、溧水、浦口四个县级市场。按此维度分析后,我们得出结论,南京市场销售额下滑100万主要是来自于城区市场和六合县城,其中散装巧克力的下滑主要是来自于南京城区市场,而128g袋装水果糖的下滑主要是来自于六合县城市场。
销售数据分析的第三个维度是要看引起数据变动的主要渠道在哪里?换句话说,是哪个渠道或哪几个渠道出现了销售业绩的变动?每个渠道数据变动的比例各是多少?按此维度分析后,我们进一步得出结论,南京市场8月份销售额下滑的100万主要是来自于两个渠道,一个是城区的喜铺渠道,另一个是六合县城的批发市场渠道,其中散装巧克力下滑的渠道主要来自于城区的喜铺渠道,128g水果糖下滑的渠道主要来自于六合县城的批发市场渠道。
经过以上三个维度的分析后,我们就可以确定销售数据变动的基本情况,从而为进一步找准“动因”提供了更加细致、准确的依据!回到案例,面对8月份销售额下滑100万的现状,经过分析后得出的结论是南京市场下滑的100万主要来自于南京城区喜铺渠道散装巧克力和六合批发市场128g袋装水果糖的下滑,其中散装巧克力下滑了40万,占比40%,128g水果糖下滑了60万,占比60%。
整个数据分析维度的模型图如下:
数据结论得出以后,接下来最为关键的是要找到“动因”,找准造成数据下滑背后的真正“动因”才是我们数据分析的最终目的!动因又应该从哪些维度方面着手呢?营销专家刘杰认为,要找到数据变化的真正“动因”需要从以下几个方面入手:
一、是不是铺市率发生了变化?
面对案例中下滑的两个品类散装巧克力和128g水果糖,我们首先要分析确定8月份这两个品类的铺市率较7月份相比是不是也出现了下滑?如果铺市率出现了下滑,那业绩自然也会下滑,如果铺市率没有下滑则业绩下滑另有他因。
二、是不是销售效率发生了变化?
所谓的销售效率主要是指产品的动销速度,销售效率的变化是引起销售数据变动的主要原因之一,当然销售效率的变化不能孤立的分析,它必须与以下提及的几点放在一起进行整体性的分析。
三、是不是价格发生了变化?
价格是影响终产品动销的关键因素之一,某个时间节点内的产品涨价或降价会在很大程度上影响该时间段内产品销售数据的变动。
四、是不是促销形式发生了变化?
随着产品同质化的程度越来越高,市场竞争日趋激烈,促销对产品的动销有着至关重要的因素,因此有无促销活动或促销形式的变化直接影响着销售数据的变动情况。
五、是不是竞品发生了变化?
市场是竞争的市场,竞品的因素很大程度上影响着本品销售数据的变化,在“动因”的寻找过程中,除了分析本品的因素以外,更要着重分析竞品的各项因素变化情况。
回到案例,经过以上5个方面的“动因”分析后我们最终得出结论,散装巧克力的下滑是因为主要竞争对手H品牌8月份在喜铺渠道开展了一次100箱送5箱的促销活动(竞争对手的原因),128g袋装水果糖的下滑是因为批发市场最大的一个分销商放弃了与Y公司的合作(铺市率降低的原因)。营销专家刘杰认为,到达这一步以后我们才算完成了有效的数据分析,因为我们找到了造成数据变化的真正“动因”。
整体“动因”寻找的模型图如下:
总的来说,数据分析是一切问题决策的基础,数据分析整套模型的核心目的就在于帮助我们又快又准的找到“动因”,“动因”找准了,解决“动因”的方法自然也就有了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17