
销售数据分析模型_数据分析师培训
销售数据分析的重要性已无需赘言,只有通过对销售数据的准确分析我们才有可能真正找准数据变动(增长或下滑)的根本原因,营销专家刘杰称之为“动因”。找准了“动因”也就发现了真正的问题所在,解决问题、发现新的生意机会点才成为可能!那么实际的销售过程中,我们如何才能有效做好数据分析,寻找到真正的“动因”呢?接下来笔者结合一个实际案例阐述一下数据分析的主要维度及如何才能真正找准“动因”。
案例:某糖果企业Y公司南京市场8月份销售业绩较去年同期下滑了100万。
在做销售数据分析的时候,第一个分析的维度就是要看数据变动是来自于哪几个大的品类。回到案例,面对Y公司南京市场8月份销售业绩较同期下滑了100万的数据变动情况,我们首先要确定的是下滑的100万是来自于哪个品类或哪几个品类,每个品类各自的下滑占比是多少,在此基础上进一步分析得出下滑的品类中是哪个规格的产品出现了下滑,从而真正找到造成业绩下滑的“罪魁祸首”。经过维度一的分析我们发现,8月份南京市场销售业绩下滑的100万主要是来自于水果糖和巧克力的下滑,其中水果糖下滑了60万,占比60%,巧克力下滑了40万,占比40%,进一步分析得出,水果糖的下滑主要是来自于128g袋装的下滑,巧克力的下滑主要是来自于散装巧克力的下滑。
销售数据分析的第二个维度是要看引起数据变动的销售区域在哪里?是整体销售区域都出现了下滑,还是局部区域市场出现了下滑?回到案例,南京市场下辖南京城区及江宁、六合、溧水、浦口四个县级市场。按此维度分析后,我们得出结论,南京市场销售额下滑100万主要是来自于城区市场和六合县城,其中散装巧克力的下滑主要是来自于南京城区市场,而128g袋装水果糖的下滑主要是来自于六合县城市场。
销售数据分析的第三个维度是要看引起数据变动的主要渠道在哪里?换句话说,是哪个渠道或哪几个渠道出现了销售业绩的变动?每个渠道数据变动的比例各是多少?按此维度分析后,我们进一步得出结论,南京市场8月份销售额下滑的100万主要是来自于两个渠道,一个是城区的喜铺渠道,另一个是六合县城的批发市场渠道,其中散装巧克力下滑的渠道主要来自于城区的喜铺渠道,128g水果糖下滑的渠道主要来自于六合县城的批发市场渠道。
经过以上三个维度的分析后,我们就可以确定销售数据变动的基本情况,从而为进一步找准“动因”提供了更加细致、准确的依据!回到案例,面对8月份销售额下滑100万的现状,经过分析后得出的结论是南京市场下滑的100万主要来自于南京城区喜铺渠道散装巧克力和六合批发市场128g袋装水果糖的下滑,其中散装巧克力下滑了40万,占比40%,128g水果糖下滑了60万,占比60%。
整个数据分析维度的模型图如下:
数据结论得出以后,接下来最为关键的是要找到“动因”,找准造成数据下滑背后的真正“动因”才是我们数据分析的最终目的!动因又应该从哪些维度方面着手呢?营销专家刘杰认为,要找到数据变化的真正“动因”需要从以下几个方面入手:
一、是不是铺市率发生了变化?
面对案例中下滑的两个品类散装巧克力和128g水果糖,我们首先要分析确定8月份这两个品类的铺市率较7月份相比是不是也出现了下滑?如果铺市率出现了下滑,那业绩自然也会下滑,如果铺市率没有下滑则业绩下滑另有他因。
二、是不是销售效率发生了变化?
所谓的销售效率主要是指产品的动销速度,销售效率的变化是引起销售数据变动的主要原因之一,当然销售效率的变化不能孤立的分析,它必须与以下提及的几点放在一起进行整体性的分析。
三、是不是价格发生了变化?
价格是影响终产品动销的关键因素之一,某个时间节点内的产品涨价或降价会在很大程度上影响该时间段内产品销售数据的变动。
四、是不是促销形式发生了变化?
随着产品同质化的程度越来越高,市场竞争日趋激烈,促销对产品的动销有着至关重要的因素,因此有无促销活动或促销形式的变化直接影响着销售数据的变动情况。
五、是不是竞品发生了变化?
市场是竞争的市场,竞品的因素很大程度上影响着本品销售数据的变化,在“动因”的寻找过程中,除了分析本品的因素以外,更要着重分析竞品的各项因素变化情况。
回到案例,经过以上5个方面的“动因”分析后我们最终得出结论,散装巧克力的下滑是因为主要竞争对手H品牌8月份在喜铺渠道开展了一次100箱送5箱的促销活动(竞争对手的原因),128g袋装水果糖的下滑是因为批发市场最大的一个分销商放弃了与Y公司的合作(铺市率降低的原因)。营销专家刘杰认为,到达这一步以后我们才算完成了有效的数据分析,因为我们找到了造成数据变化的真正“动因”。
整体“动因”寻找的模型图如下:
总的来说,数据分析是一切问题决策的基础,数据分析整套模型的核心目的就在于帮助我们又快又准的找到“动因”,“动因”找准了,解决“动因”的方法自然也就有了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18