京公网安备 11010802034615号
经营许可证编号:京B2-20210330
英特尔公司的创始人之一戈登•摩尔在1965年发现了一个惊人的趋势,即集成电路芯片上所集成的电路的数目每隔18个月就翻一番,该发现被业界誉为摩尔定律。后来也有被描述为微处理器的性能每隔18个月提高一倍,或价格下降一半;或用同等价钱能买到的电脑性能(速度和储存量)每隔18个月翻一番,等等。
40多年在人类沧海桑田的历史上仅仅是弹指一挥间,摩尔定律却见证了电脑的数据处理和储存能力从K(Kilobyte)到M(Megabyte)到G(Gigabyte)到T(Terabyte)的变迁。尤其是互联网的出现,让我们急速地跨入了大数据(Big Data)时代。其主要的驱动力有以下几点:
1、随着社会经济的发展和个人收入的增加,人们的个性化需求开始凸显。而企业要去高效地满足这些个性化的需求则需要大量的数据支持。
2、互联网的出现和相关技术的发展让海量数据的收集和分析成为可能。互联网的特征又导致这些数据能够被高速度和大容量的传播。
3、互联网引入了由用户产生数据的模式。这种模式的特征是多源头,低成本,更及时。当然,这些数据的真实性和可靠性需要被核证。
4、构建在互联网基础上的电子商务和传统零售比较的优势之一就是数据的可获得性。电子商务可以实时得到顾客的来访源头,在网站内的搜索、收藏、购买行为,以及购买的商品间的关联性。这些数据可以帮助企业更精准的为顾客服务。
5、人工智能、信息系统和决策科学的发展促进了多种分析方法及工具的推动,包括数据挖掘,顾客行为模型,决策支持,等等。
数据(Data)是原始和零散的,经过过滤和组织后成为信息(Information),将相关联的信息整合和有效的呈现则成为知识(Knowledge),对知识的深层领悟而升华到理解事物的本质并可以举一反三则为智慧(Wisdom)。所以数据是源头,是决策和价值创造的基石。
数据的应用大致分以下几个步骤:a.数据采集、核实与过滤;b.在数据仓库内的分类和储存;c.数据挖掘以找到数据所隐含的规律和数据间的关联;d.数据模型建立和参数调整;e.基于数据的应用开发和决策支持。下面用实例来说明。
1、美国医药网站WebMD根据怀孕的女性用户填写的受孕信息定期给用户寄EDM,提醒母亲在该时间点的注意事项,需要摄入的营养,产前的生理变化和要做好的思想准备,产后的恢复,宝宝的育养和健康,等等。
2、1号店利用对大数据的分析给顾客发送个性化EDM。若顾客曾经在1号店网站上查看过一个商品而没有购买,则有几种可能:a.缺货,b.价格不合适,c.不是想要的品牌或不是想要的商品,d.只是看看。 若在顾客查看时该商品缺货则到货时立即通知顾客;若当时有货而顾客没有买就很有可能是因为价格引起的,则在该商品降价促销时通知顾客;同时,在引入和该商品相类似或相关联的商品时温馨告知顾客。另外,通过挖掘顾客的周期性购买习惯,在临近顾客的购买周期时适时的提醒顾客。
3、淘宝在2012年推出了淘宝时光机。 该应用通过分析顾客自注册为用户以来的行为,用幽默生动的语言告知顾客淘宝的成长,和该用户相类似喜好的其他用户的统计行为,对该顾客经过分析后对其喜好的了解和对其行为的预测,等等。用生动的文稿和个性化的数据、拉近了和顾客的距离。
4、Google的Adsense对顾客的搜索过程和其对各网站的关注度进行数据挖掘。 并在其联盟内的网站追踪顾客的去向,在联盟网站上推出和顾客潜在兴趣相匹配的广告,精准化营销,提高转化率。
5、Amazon近几年推出了FDFC(Forward Deployed Fulfillment Center)的概念,以加快对顾客配送的速度。Amazon的订单履行中心分两个层级:FC和FDFC,其中FC品种更齐全,而FDFC在物理位置上更靠近目标市场,但品种重点容纳针对目标市场的热销商品,顾客的大部分需求可以通过FDFC来满足,不能满足的长尾商品则由FC来满足。这样顾客急需的商品多数可以通过FDFC以更快捷和低成本的物流来完成。由于热销商品是随着时间和季节而改变的,故将什么商品储存在FDFC的决策是动态调整的,而此决策的依据就是对顾客需求的分析和预测。
各种应用的例子难以穷举,但趋势十分清楚:大数据的应用价值和潜力不再被人低估。但并不是所有企业都能在大数据这个金矿里真正挖到金子的。只有那些有远见有视野,重视系统,舍得投入,吸引了优秀的分析和系统人才的企业才会有所斩获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20