京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“四步法”提升数据分析能力的成熟度
配备合适的人才和技术,您可以做到未雨绸缪,快速响应。
现实中存在着数量惊人的公司,在需要作出影响其公司底线的关键决策的时刻,缺乏及时有效的信息。想象一下这样的一个画面:某汽车生产厂家由于安全故障问题而面临大量召回的风险;或者社交媒体上充斥着对某旅行社的负面评价;如果在这些事件发生之前或者在危险还没升级之前,相应的危机可以得到解决的话,相信无论是汽车生产厂家还是旅行社,都会大受裨益。
幸运的是,我们知道一个公司/组织能否对未来作出快速的响应,与其内部预测分析能力的成熟度直接相关。而这一切又取决于合理的人才配备、分析流程以及分析技术的部署和应用,全副的武装可助您解燃眉之急,并赋予您处理实际业务中碰到的疑难困惑的能力,还能够对潜在的风险作出预警,当然所有这些都建立在对现有数据进行分析的基础上。
接下来的四步曲可以帮助您提升组织内部敏捷的分析能力,即在事情还未发生之前及时作出预警,从而减少未来的不确定性。
第一步: 把分析置于首要地位
提升组织内部分析能力最关键的一步就是要让所有的员工都意识到基于信息决策的重要性。关于数据分析重要性的宣介活动可以通过多种形式:包括视频教学、在线研讨会以及关于数据分析实践的社群共享,或者直接给大家展示可视化分析的结果等。总之,不管通过何种方式,要让大家清楚的认识到高级的数据分析技术可以带来重要的价值应用。
同时,你也可以盘点并梳理一下组织内部现有的分析资源:比如挑选不同部门内部对数据敏感、有一定分析能力的员工;记录组织内部有哪些关键的数据分析技术应用,列出关键的业务应用领域。我们还建议推举出分析领域的专门负责人,由这个人负责主要数据分析战略的落实,保证组织在接下来各个阶段的分析能力建设的成功部署。
第二步: 进行分析试点
该阶段通过梳理和使用现有的分析资源,明确公司的数据分析能力。通过将组织的现状和将来的战略目标进行对比,确定存在哪些新的机会,分析可以在其中起到关键作用。再进一步,分析团队需要考虑如何使得分析预测的结果更加精确和及时,以及这些分析结果如何在业务中得到更好的应用。
数据分析的整个流程是该阶段的关键,一定要特别注意。我们既要进行深入的数据探索和建模,还要考虑模型的修正、部署以及监督应用;通过详细回顾分析的整个流程,您将有可能发现哪里存在不足,以及哪些地方需要改进,进而形成数据分析相关的规章制度和相关流程。
第三步: 组建分析团队
组建内部自发的分析团队,并鼓励形成凝聚力强的分析社区。内部的分析专家可以相互进行探讨,对组织内部数据分析建设提出建议,并通过有效的维系促进分析能力的建设和发展。
小组会议,研讨会以及用户交流会或者博客等形式都有助于提升数据分析的应用和升级,在分析能力建设的后期,交流对于公司整体数据分析能力的提升发挥着极其重要的杠杆作用。
第四步: 通过分析预测调整战略部署
到了该阶段就意味着所有数据分析相关的基础架构和配备都已经部署完毕,组织根据业务变化的需要可以借助强大的分析能力作出快速响应。比如针对业务需要的新的模型可以很快的建立和部署应用,而且比以往的预测结果更加精确,从而可以提供更加精准的信息。
在该阶段,分析的目的应该从简单的回答战术性问题转移到更具前瞻性的战略问题上来,该阶段的分析包括对一些有可能发生的情景进行测试,通过模拟、优化以及其他前沿的统计学方法排除一些发生概率低的可能性结果。该工作可以通过一个集中的分析平台来进行。除此之外,不同形式的海量数据的应用,包括文本数据和社交数据,也可以帮助预见未来,并激发创新性的想法以吸引消费者,同时赢得市场先机。
结论
要完成以上四步的实施并非易事,也不能一蹴而就。分析能力的培养需要领导层的决心和信心以及其持续性的支持和努力,另外对人才储备和分析工具进行的投资同样也是成功的关键。
提升组织的分析能力成熟度需要多方面的工作,包括合理的人才配备、分析流程以及分析技术的部署和应用更关键的是数据资产的质量和完备性。但是高效灵活的数据分析带来的回报是不可估量的-有可能是决定性的成败!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22