
大数据分析价值渐现 企业应用需以客户为中心
在全球化的过程中世界已经变成了一个平面、一张网、一朵云,在其中数据就像血液一样不停的流动着。对于企业而言大数据分析可以很好地优化业务,在降低成本的同时提高用户体验,当然大数据分析应用到具体企业时也需要根据不同的业务特性进行结合,未来企业中以客户为中心的大数据应用将成为重点方向。
大数据分析辅助业务转型
温水煮青蛙的故事估计很多人都知道,在安逸的环境中很容易缺乏危机意识,企业也是相同,但如何才能不做温水青蛙?
企业中已经有越来越多的高管开始关注IT,不仅限于CIO。而在信息爆炸的年代,企业需要更多的数据科学家来进行数据分析,甚至一些企业还设立了CDO(首席数据官)的职位,对大数据和分析进行单独的管控。
这相对于没有数据提供参考往往依靠直觉和过往的经验作出决策的企业,他们有个大的几率走进不可挽回的误区,而利用大数据和分析则可以更好、更快速的对业务和市场把脉。
2014年4月埃森哲调查了全球高管眼中大数据的最大作用,其中89%的高管认为大数据会彻底改变做生意的方式,就像互联网一样,他们还相信会有其他巨大变化。
业务转型是目前大多数企业的普遍需求,大数据分析不仅可以优化访问、加快决策、最大程度提高可用性,还可以辅助业务转型。但企业在使用大数据分析时也并没有想象的那样简单,使用其实现业务转型需要注意三点:
一、决策文化改变,以数据驱动决策
二、确保分析数据的安全性和准确性
三、大数据分析平台应用
越来越多的企业已经意识到之一点,但企业的种类多种多样,针对于不同企业业务大数据分析应用也有所不同。所以未来企业需要在了解业务的同时,将业务与大数据分析进行结合,以创造更多价值。
大数据应用与业务相结合
目前在传统行业中金融、电信、政府、交通、医疗已经成为大数据分析使用的主力。
以金融行业为例,通过大数据技术可以把银行的一些历史数据转换成活数据加以利用。当然金融企业也在尝试利用社交媒体的信息进行分析,这可以了解不同区域的用户对于理财的需求,以便企业可以基于不同区域提供符合该区域特色的理财服务。
民生银行作为中国第一家主要由非国有企业创办的银行,年交易量和客户账户数量正在以50%和30%的速度增长。面对持续的高速增长,其所有业务都面临着如何快速响应客户和保证7*24小时可用性。
民生银行意识到要解决业务不断增长带来的问题,就必须彻底改造现有银行系统和基础设施,尤其是原有银行系统已经越来越缺少灵活应对市场变化和客户需求的能力。
民生银行通过SAP银行业解决方案以单一面向服务的架构(SOA)平台交付,提高银行交易流程的灵活性。在硬件上配以IBM AIX操作系统的IBM Power 780服务器。借助先进的 IBM POWER7+TM处理器技术, 支持最为严苛的工作负载,具备大型机的可靠性和可用性。
民生银行还采用了IBM PowerVM虚拟化技术充分利用服务器资源,将多个应用合并到一个服务器上,提供更加灵活、动态的IT基础设施。使其可以迅速响应不断变化的业务需求,加快产品和服务的迭代速度。
同时利用IBM DB2高可用性灾难恢复(HADR)功能防止数据库中的数据丢失,并且保证故障后的款塑恢复,时间低于五分钟。
民生银行只是其中一个案例,还有更多的企业正在使用着大数据分析帮助企业决策,提升用户体验,并以客户为中心造就越来越多的新型商业模式。
总结:
各行各业都开始大数据的应用已经毋庸置疑,这也让大数据分析对于企业基础架构的挑战同样迫在眉睫。IBM的服务器和存储架构则可以有效帮助企业解决大数据分析中存在的可靠性、可用性等诸多问题。支持安全共享的方式访问数据,对不同工作负载进行快速分析,以及最大程度提高信息的可用性,并且针对企业的行业属性和具体业务,制定相关的行业解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16