
假设检验(HypothesisTesting),或者叫做显著性检验(SignificanceTesting)是数理统计学中根据一定假设条件由样本推断总体的一种方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。既然以假设为前提,那么在进行检验前需要提出相应的假设:
H0:原假设或零假设(nullhypothesis),即需要去验证的假设;一般首先认定原假设是正确的,然后根据显著性水平选择是接受还是拒绝原假设。
H1:备择假设(alternativehypothesis),一般是原假设的否命题;当原假设被拒绝时,默认接受备择假设。
如原假设是假设总体均值μ=μ0,则备择假设为总体均值μ≠μ0,检验的过程就是计算相应的统计量和显著性概率,来验证原假设应该被接受还是拒绝。
T检验
T检验(TTest)是最常见的一种假设检验类型,主要验证总体均值间是否存在显著性差异。T检验属于参数假设检验,所以它适用的范围是数值型的数据,在网站分析中可以是访问数、独立访客数、停留时间等,电子商务的订单数、销售额等。T检验还需要符合一个条件——总体符合正态分布。
这里不介绍t统计量是怎么计算的,基于t统计量的显著性概率是怎么查询的,其实这些计算工具都可以帮我们完成,如果有兴趣可以查阅统计类书籍,里面都会有相应的介绍。这里介绍的是用Excel的数据分析工具来实现T检验:
Excel默认并没有加载“数据分析”工具,所以需要我们自己添加加载项,通过文件—选项—加载项—勾选“分析工具库”来完成添加,之后就可以在“数据”标签的最右方找到数据分析这个按钮了,然后就可以开始做T检验了,这里以最常见的配对样本t检验为例,比较某个电子商务网站在改版前后订单数是否产生了显著性差异,以天为单位,抽样改版前后各10天的数据进行比较:
改版前订单数改版后订单数
首先建立假设:
H0:μ1=μ2,改版前后每天订单数均值相等;
H1:μ1≠μ2,改版前后每天订单数均值不相等。
将数据输入Excel,使用Excel的数据分析工具,选择“t检验:平均值的成对二样本分析”,输出检验结果:
看到右侧显示的结果是不是有点晕了,看上去有点专业,其实也并不难,只要关注一个数值的大小——单尾的P值,这里是0.00565,如果需要验证在95%的置信水平下的显著性,那么0.00565显然小于0.05(1-95%),拒绝零假设,认为改版前后的订单数存在显著性差异。简单说下为什么选择单尾显著性概率P,而不是双尾,对于大部分网站分析的应用环境,我们一般需要验证改动前后数值是否存在明显提升或下降,所以一般而言只会存在一类可能——或者提升或者下降,所以只要检验单侧的概率即可,就像上面例子中改版后的订单数均值1240.6大于改版前的1097.3,我们需要验证的就是这种“大于”是否是显著的,也就是做的是左侧单边检验,这种情况下只要关注单尾的显著性概率P即可。
卡方检验
卡方检验(chi-squaretest),也就是χ2检验,用来验证两个总体间某个比率之间是否存在显著性差异。卡方检验属于非参数假设检验,适用于布尔型或二项分布数据,基于两个概率间的比较,早期用于生产企业的产品合格率等,在网站分析中可以用于转化率、BounceRate等所有比率度量的比较分析,其实在之前的文章——AbandonmentRate的影响因素进行过相关的应用。这里同样不去介绍χ2是如何计算得到的,以及基于χ2统计量的显著性概率的查询等,这里直接以转化率为例来比较网站改版前后转化率是否发生了显著性差异,抽样改版前后各3天的网站分析数据——总访问数和转化的访问数,用“转化访问数/总访问数”计算得到转化率:
改版前改版后
总访问数3056733651
转化访问数29763698
转化率9.74%10.99%
首先建立假设:
H0:r1=r2,改版前后转化率相等;
H1:r1≠r2,改版前后转化率不相等。
其实这是一个最简单的四格卡方检验的例子,也无需使用SPSS(当然你足够熟悉SPSS也可以使用类似的统计分析工具),为了简化中间的计算步骤,我这里用Excel直接制作了一个简单的卡方检验的模板,只要在相应的单元格输入统计数据就能自动显示检验的结果:
点击下载:卡方检验示例
Excel中浅蓝色的单元格都支持输入,包括原用方案和测试方案的总访问数和转化访问数,另外置信度95%也是支持修改了,如果你需要99%的置信水平,只要修改这个单元格即可。
怎么看检验结果?其实非常简单,只要看那个红色的“存在”单元格的显示结果即可,上面的案例中两者的转化率“存在”显著性差异,如果不存在,则该单元格相应的就会显示“不存在”,有了这个模板对于A/BTesting等类似的数据比较也显得非常简单容易,或者说其实这个Excel模板就是为了A/BTesting而量身定制的。
好了,就到这里吧,其实这篇文章并不是想从专业的统计学的角度来介绍T检验和卡方检验,只是想让大家了解这两个方法的原理和适用条件,能够用最简单的方式去使用诸如此类的方法让数据更具说服力,请继续关注之后奉上的应用实例。(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04