京公网安备 11010802034615号
经营许可证编号:京B2-20210330
微信数据分析和微信传播模型_数据分析师培训
什么是微信数据分析呢?
试想一下,如果是你,会怎么向你的领导、向你的下属,进行数据分析呢?是像描述天气一样“昨天阴天,今天天气挺好,风和日丽的,明天预报多云”,还是用其他的方式?大多数人所为的数据分析就像刚才描述天气一样,那不是分析,而是描述数据。
数 据分析需要从来源、行为、流失等方面进行分析。微信数据分析要根据微信传播的特性而定,微信传播是基于好友分享内容而产生的,这里不考虑单纯的复制粘贴, 那样的传播指向性不明确,这里我们只讨论指向性明确的分享链接和内容。微信数据分析需要从用户入手,新增、活跃、留存代表着数据分析的三个方面,进行开源 节流。
数据分析的作用,能够帮助我们回顾过去,评估现在,计划明天,预测未来,从而能够展望未来。数据分析还能够帮助我们认清现状,通过计划明天,逐渐向我们预想的未来靠近。
微信数据分析的内容(举栗子而已)
1、 新增用户数,主要包括:男、女、未知来源、员工推广、活动推广、用户传播、老用户传播、新用户传播、未知来源占比、员工推广占比、活动推广占比、用户传播 占比、老用户传播占比、新用户传播占比、分享员工、分享用户、分享老用户、分享新用户、分享员工占比、分享新用户占比、分享员工人均传播、分享用户人均传 播、分享老用户人均传播、分享新用户人均传播等。
2、好友关系数,主要包括好友数:0、1、2-5、6-10、10-20、20+以及占比情况等。
3、好友关系来源,主要包括:第一关系链ID、第一关系链昵称、关系类型和来源类型等。
4、微信/微信社区行为:如果是游戏,主要有注册(授权登录)、打开、完成、未完成、分享等;如果是电商,主要有注册(授权登录)、打开、下单、付费、删除订单等;如果是普通社区页面,主要有注册、打开、浏览、分享等。
5、交叉分析:留存用户数、新增用户数、留存人均、新增人均,次日用户留存率、7日留存、14天留存、30天留存;用户活跃度,行为完成、未完成用户数以及比例;活跃用户数,行为完成情况分类分析、完成率分析、完成率高低用户分析等。
6、交叉分析形式:图、表、图表。
7、通过交叉分析看产品运营数据的前生今世,了解昨天、评估今天,为前景而计划明天的具体实施。
微信传播模型
1、循环模型
模型来源,巧贝科技CEO Hata
2、循环公式(来源,巧贝科技CEO Hata)
NU – New Users(新用户数)
AU – Active Users(活跃用户数)
R% – Retention Rates(留存率)
S% – Share Rates(分享率)
F – Friends(好友数)
C% – Conversion Rates(转化率)
AU 01 = NU X0 × R N1%
NU 01 = AU 01 × S N1% × F × C N1%
= NU 00 × R N1% × S N1% × F × C N1%
= NU X0 × K N1%
NU X1 = NU X0 × K N1%
…………(抱歉中间部分省略下,嘿嘿)
NU X4 ≈ NU X0 × K N1%4
NU n ≈ NU 0 × K %n
3、根据模型改进产品和运营
| R% | 21% |
| S% | 20% |
| F | 100 |
| C% | 25% |
几种可能的数值
| R% | 20% | R% | 25% | R% | 30% | ||
| S% | 20% | S% | 25% | S% | 25% | ||
| F(常量) | 100 | F(常量) | 100 | F(常量) | 100 | ||
| C% | 25% | C% | 16% | C% | 14% | ||
| 1 | 1 | 1.0125 | |||||
| R% | 30% | R% | 35% | R% | 35% | ||
| S% | 30% | S% | 30% | S% | 35% | ||
| F(常量) | 100 | F(常量) | 100 | F(常量) | 100 | ||
| C% | 12% | C% | 10% | C% | 9% | ||
| 1.08 | 1.05 | 1.1025 | |||||
| R% | 21% | ||||||
| S% | 20% | ||||||
| F(常量) | 100 | ||||||
| C% | 25% | ||||||
| 1.05 | |||||||
理想中的是黄色部分中的两个,R%、S%、C%在这个基础上持续的增长,才能够给传播带来积极地效果和回报。产品和运营需要基于这三个点作调整,不断的优化、改进,甚至是颠覆式的创新。
如何提高R,留存率?
如何提高S,分享率?
又如何提高C,转化率?
当然,这个模型还有不完善的地方,首先,不适用与电商以及其他社会化媒体,目前只考虑了针对微信的传播模型,其他类型根据平台上用户行为以及传播的特性,会有一定的不同。其次,这个模型还需要大量的实例来证明和说明,提出不能指导实际工作的模型都是耍流氓。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08