京公网安备 11010802034615号
经营许可证编号:京B2-20210330
微信数据分析和微信传播模型_数据分析师培训
什么是微信数据分析呢?
试想一下,如果是你,会怎么向你的领导、向你的下属,进行数据分析呢?是像描述天气一样“昨天阴天,今天天气挺好,风和日丽的,明天预报多云”,还是用其他的方式?大多数人所为的数据分析就像刚才描述天气一样,那不是分析,而是描述数据。
数 据分析需要从来源、行为、流失等方面进行分析。微信数据分析要根据微信传播的特性而定,微信传播是基于好友分享内容而产生的,这里不考虑单纯的复制粘贴, 那样的传播指向性不明确,这里我们只讨论指向性明确的分享链接和内容。微信数据分析需要从用户入手,新增、活跃、留存代表着数据分析的三个方面,进行开源 节流。
数据分析的作用,能够帮助我们回顾过去,评估现在,计划明天,预测未来,从而能够展望未来。数据分析还能够帮助我们认清现状,通过计划明天,逐渐向我们预想的未来靠近。
微信数据分析的内容(举栗子而已)
1、 新增用户数,主要包括:男、女、未知来源、员工推广、活动推广、用户传播、老用户传播、新用户传播、未知来源占比、员工推广占比、活动推广占比、用户传播 占比、老用户传播占比、新用户传播占比、分享员工、分享用户、分享老用户、分享新用户、分享员工占比、分享新用户占比、分享员工人均传播、分享用户人均传 播、分享老用户人均传播、分享新用户人均传播等。
2、好友关系数,主要包括好友数:0、1、2-5、6-10、10-20、20+以及占比情况等。
3、好友关系来源,主要包括:第一关系链ID、第一关系链昵称、关系类型和来源类型等。
4、微信/微信社区行为:如果是游戏,主要有注册(授权登录)、打开、完成、未完成、分享等;如果是电商,主要有注册(授权登录)、打开、下单、付费、删除订单等;如果是普通社区页面,主要有注册、打开、浏览、分享等。
5、交叉分析:留存用户数、新增用户数、留存人均、新增人均,次日用户留存率、7日留存、14天留存、30天留存;用户活跃度,行为完成、未完成用户数以及比例;活跃用户数,行为完成情况分类分析、完成率分析、完成率高低用户分析等。
6、交叉分析形式:图、表、图表。
7、通过交叉分析看产品运营数据的前生今世,了解昨天、评估今天,为前景而计划明天的具体实施。
微信传播模型
1、循环模型
模型来源,巧贝科技CEO Hata
2、循环公式(来源,巧贝科技CEO Hata)
NU – New Users(新用户数)
AU – Active Users(活跃用户数)
R% – Retention Rates(留存率)
S% – Share Rates(分享率)
F – Friends(好友数)
C% – Conversion Rates(转化率)
AU 01 = NU X0 × R N1%
NU 01 = AU 01 × S N1% × F × C N1%
= NU 00 × R N1% × S N1% × F × C N1%
= NU X0 × K N1%
NU X1 = NU X0 × K N1%
…………(抱歉中间部分省略下,嘿嘿)
NU X4 ≈ NU X0 × K N1%4
NU n ≈ NU 0 × K %n
3、根据模型改进产品和运营
| R% | 21% |
| S% | 20% |
| F | 100 |
| C% | 25% |
几种可能的数值
| R% | 20% | R% | 25% | R% | 30% | ||
| S% | 20% | S% | 25% | S% | 25% | ||
| F(常量) | 100 | F(常量) | 100 | F(常量) | 100 | ||
| C% | 25% | C% | 16% | C% | 14% | ||
| 1 | 1 | 1.0125 | |||||
| R% | 30% | R% | 35% | R% | 35% | ||
| S% | 30% | S% | 30% | S% | 35% | ||
| F(常量) | 100 | F(常量) | 100 | F(常量) | 100 | ||
| C% | 12% | C% | 10% | C% | 9% | ||
| 1.08 | 1.05 | 1.1025 | |||||
| R% | 21% | ||||||
| S% | 20% | ||||||
| F(常量) | 100 | ||||||
| C% | 25% | ||||||
| 1.05 | |||||||
理想中的是黄色部分中的两个,R%、S%、C%在这个基础上持续的增长,才能够给传播带来积极地效果和回报。产品和运营需要基于这三个点作调整,不断的优化、改进,甚至是颠覆式的创新。
如何提高R,留存率?
如何提高S,分享率?
又如何提高C,转化率?
当然,这个模型还有不完善的地方,首先,不适用与电商以及其他社会化媒体,目前只考虑了针对微信的传播模型,其他类型根据平台上用户行为以及传播的特性,会有一定的不同。其次,这个模型还需要大量的实例来证明和说明,提出不能指导实际工作的模型都是耍流氓。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26