京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么数据化运营如此重要_数据分析师培训
大数据的真正价值在于数据驱动决策——通过数据来做出的决定,要优于常规决策。当你的想法有更多的证据(即数据)来支持业务决策时,这一点当然听起来不错,但是如何让这个想法真正落地,是一件非常不容易的事。
数据驱动是什么意思?
想要成为一家数据驱动型公司,这可不仅仅是收集数据、定期查看数据这么简单的。真正的数据化运营指的是,企业在做每一个决策之前,都需要分析相关数据,并让这些数据结论指导公司的发展方向。
每一位员工也应收集、分析并定期学习数据。数据应该共享,并用于规划、报告、在内部监控自己的目标和方向。
为什么数据化运营如此重要?
为什么数据化运营如此重要?答案很简单, 相比基于本能,假设,或认知偏见而做出的决策,基于证据的决策更可靠。通过数据驱动的方法,你将能够判断趋势,从而展开有效行动,帮助自己发现问题,推动创新或解决方案出现。麻省理工学院一项针对数字业务的研究发现,那些在大多数情况下都进行数据驱动决策的企业,它们的生产率比一般企业高4%,利润则要高6%。
数据还可以为员工提供一个良好的标准,将自己的工作和业务结果联系起来,从而发现一些可以改进的新机会。绩效评估可以建立在一些可衡量的标准上,管理者也可以了解整个公司的状态,以及公司的优势和劣势所在。
Salesforce的创始人兼CEO Fred Shilmover在一次采访中说:“你要么利用数据,做出更好决策,要么你就忽略这些数据,让别人超过你。”
数据驱动决策的六大步骤
1.得到尽可能多的数据
数据驱动决策的第一步是,你要有数据。现在基于云的软件平台成本相当低,你真的没有借口不收集和存储尽可能多的数据。这些数据也许有用,也许没用,但你永远不会知道,除非你真的去分析这些数据。
在收集数据的过程中,你应该注意两类数据,内部数据(搜索引擎指数、网站转化率和已有客户数据),外部数据(社交媒体、竞争对手数据、市场数据等)。今天的数据收集和分析工具允许您将任何东西变成数据,所以你可以尽情让你的想象力自由驰骋。
2.制定可衡量的目标
制定一些可衡量的目标(比如增加20%收入),迫使自己去分析为什么没能达到这个目标。找到原因的唯一方法就是查看数据,这将帮助你发现哪些变量影响了业务的哪些环节。你做的每件事都应该有一些可以去测量的成果。这些“目标”不仅仅适用于高层,也应该被用于单个项目和个人目标设定。这不仅能帮助你评估你的表现,还可以让你的员工了解自己对公司带来的贡献。
3.确保每个人都能使用数据
一旦你收集并存储所有的数据,你需要确保公司的每个人都能使用这些数据。数据不应该局限于数据科学家或IT部门。为了培养一个数据驱动的文化,每个部门都要有使用数据的权力,以做出相关决策。因此培训员工了解数据非常重要。
很多国际领先的企业都意识到,成功意味着给人们提供处理数据的机会。让数据为所有员工变得简单可用,这足以改变一个公司的文化。这有助于企业成功。
为了让每个人都能使用数据,你需要一个c级别的人负责你的数据策略。这个人要带领公司推动数据驱动决策,并通过自上而下的命令和指导,来推动公司文化的转变。
4.雇佣数据科学家
你应该将数据融入到公司的每一个角落,但是要想深入了解你的数据,你还应该雇佣一些数据专家。你的员工应该了解数据,但你不能指望他们会掌握复杂的算法和数据挖掘技术。你需要自己找一些数据科学家。你应该找一个非常懂业务,又十分了解数据科学、数据洞察、数据营销和策略的人,这个人不仅可以将非结构化数据转换为结构化数据并进行定量分析,还帮助公司决定要对哪些数据源进行分析,客户真正需要什么样的数据和分析需求,以及如何最好地把基于数据的产品和服务转变成行之有效的商业模式。
5.挑选合适的数据分析工具
有了数据科学家以后,你应该搭建一个完整的数据分析平台。如果你的IT部门人手有限,你可以选择一款敏捷型的数据分析工具,例如永洪BI,基于这些工具再进行定制化开发,打造出最满足自己分析需求的数据平台。目前市面上的数据分析工具既有免费的,也有收费的,一些领先工具已经可以做到实时、自服务、动态可交互的分析。你可以用免费的流量监测网站,来判断自己官网的搜索指数,监测APP运营状况。当分析需求变多时,你也可以挑选如永洪BI、Qlikview这样的大数据分析工具,进行多维度的自服务的数据分析。
6.让数据变成优先级
成为一个数据驱动公司的最好方法就是使数据成为一个优先级的任务,从最高层的管理者开设。公司的每个人都需要了解数据驱动的方法。这意味着你需要培养一种数据驱动决策的文化。
有远见的公司已经把数据驱动决策融入到他们的日常工作中。他们几乎所有重要决策的核心都是数据。他们在做决策时可以容忍疑问,甚至异议,只要这些质疑是基于数据和分析的基础上。这才是真正的数据驱动型企业。因此,一些专家甚至放出豪言,3-5年之内,如果你的企业还没有开始构建数据化运营体系,那么你的企业很可能将因为失去数据打造的核心竞争力而苟延残喘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10