
为什么数据化运营如此重要_数据分析师培训
大数据的真正价值在于数据驱动决策——通过数据来做出的决定,要优于常规决策。当你的想法有更多的证据(即数据)来支持业务决策时,这一点当然听起来不错,但是如何让这个想法真正落地,是一件非常不容易的事。
数据驱动是什么意思?
想要成为一家数据驱动型公司,这可不仅仅是收集数据、定期查看数据这么简单的。真正的数据化运营指的是,企业在做每一个决策之前,都需要分析相关数据,并让这些数据结论指导公司的发展方向。
每一位员工也应收集、分析并定期学习数据。数据应该共享,并用于规划、报告、在内部监控自己的目标和方向。
为什么数据化运营如此重要?
为什么数据化运营如此重要?答案很简单, 相比基于本能,假设,或认知偏见而做出的决策,基于证据的决策更可靠。通过数据驱动的方法,你将能够判断趋势,从而展开有效行动,帮助自己发现问题,推动创新或解决方案出现。麻省理工学院一项针对数字业务的研究发现,那些在大多数情况下都进行数据驱动决策的企业,它们的生产率比一般企业高4%,利润则要高6%。
数据还可以为员工提供一个良好的标准,将自己的工作和业务结果联系起来,从而发现一些可以改进的新机会。绩效评估可以建立在一些可衡量的标准上,管理者也可以了解整个公司的状态,以及公司的优势和劣势所在。
Salesforce的创始人兼CEO Fred Shilmover在一次采访中说:“你要么利用数据,做出更好决策,要么你就忽略这些数据,让别人超过你。”
数据驱动决策的六大步骤
1.得到尽可能多的数据
数据驱动决策的第一步是,你要有数据。现在基于云的软件平台成本相当低,你真的没有借口不收集和存储尽可能多的数据。这些数据也许有用,也许没用,但你永远不会知道,除非你真的去分析这些数据。
在收集数据的过程中,你应该注意两类数据,内部数据(搜索引擎指数、网站转化率和已有客户数据),外部数据(社交媒体、竞争对手数据、市场数据等)。今天的数据收集和分析工具允许您将任何东西变成数据,所以你可以尽情让你的想象力自由驰骋。
2.制定可衡量的目标
制定一些可衡量的目标(比如增加20%收入),迫使自己去分析为什么没能达到这个目标。找到原因的唯一方法就是查看数据,这将帮助你发现哪些变量影响了业务的哪些环节。你做的每件事都应该有一些可以去测量的成果。这些“目标”不仅仅适用于高层,也应该被用于单个项目和个人目标设定。这不仅能帮助你评估你的表现,还可以让你的员工了解自己对公司带来的贡献。
3.确保每个人都能使用数据
一旦你收集并存储所有的数据,你需要确保公司的每个人都能使用这些数据。数据不应该局限于数据科学家或IT部门。为了培养一个数据驱动的文化,每个部门都要有使用数据的权力,以做出相关决策。因此培训员工了解数据非常重要。
很多国际领先的企业都意识到,成功意味着给人们提供处理数据的机会。让数据为所有员工变得简单可用,这足以改变一个公司的文化。这有助于企业成功。
为了让每个人都能使用数据,你需要一个c级别的人负责你的数据策略。这个人要带领公司推动数据驱动决策,并通过自上而下的命令和指导,来推动公司文化的转变。
4.雇佣数据科学家
你应该将数据融入到公司的每一个角落,但是要想深入了解你的数据,你还应该雇佣一些数据专家。你的员工应该了解数据,但你不能指望他们会掌握复杂的算法和数据挖掘技术。你需要自己找一些数据科学家。你应该找一个非常懂业务,又十分了解数据科学、数据洞察、数据营销和策略的人,这个人不仅可以将非结构化数据转换为结构化数据并进行定量分析,还帮助公司决定要对哪些数据源进行分析,客户真正需要什么样的数据和分析需求,以及如何最好地把基于数据的产品和服务转变成行之有效的商业模式。
5.挑选合适的数据分析工具
有了数据科学家以后,你应该搭建一个完整的数据分析平台。如果你的IT部门人手有限,你可以选择一款敏捷型的数据分析工具,例如永洪BI,基于这些工具再进行定制化开发,打造出最满足自己分析需求的数据平台。目前市面上的数据分析工具既有免费的,也有收费的,一些领先工具已经可以做到实时、自服务、动态可交互的分析。你可以用免费的流量监测网站,来判断自己官网的搜索指数,监测APP运营状况。当分析需求变多时,你也可以挑选如永洪BI、Qlikview这样的大数据分析工具,进行多维度的自服务的数据分析。
6.让数据变成优先级
成为一个数据驱动公司的最好方法就是使数据成为一个优先级的任务,从最高层的管理者开设。公司的每个人都需要了解数据驱动的方法。这意味着你需要培养一种数据驱动决策的文化。
有远见的公司已经把数据驱动决策融入到他们的日常工作中。他们几乎所有重要决策的核心都是数据。他们在做决策时可以容忍疑问,甚至异议,只要这些质疑是基于数据和分析的基础上。这才是真正的数据驱动型企业。因此,一些专家甚至放出豪言,3-5年之内,如果你的企业还没有开始构建数据化运营体系,那么你的企业很可能将因为失去数据打造的核心竞争力而苟延残喘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25