
大数据分析时代 99click致力于成为电商数据分析领域的“SAP”
近年来,大数据分析越来越为各行业人士所热议,被认为是能给企业业务带来革命性转变的技术。电商行业作为网络时代的核心产业,基于互联网的数据能力,更是其核心竞争力,使其在与实体企业的竞争中,能够迅速全面的获取用户行为信息和需求,更快做出反应。现在中国的电子商务正在面临着新一轮竞争与考验,企业对于数据分析的需求与日俱增。
在此需求下,第三方数据服务应运而生。作为中国最早专注于电商领域的数据监测分析的服务商, 99click公司已经与超过1000家主流商务网站建立了合作,其独树一帜的数据分析技术为业界所追捧。 致力于成为电子商务数据分析领域的“SAP” SAP公司,作为世界500强背后的管理大师,是全球最大的企业ERP系统和商务智能解决方案供应商。30年来, SAP持续不断向全球各行业企业提供广泛的业务管理解决方案。
同为软件公司,成立9年的99click虽然与SAP领域不同,但是同样立志于帮助企业高效的解决业务问题。99click通过其应用软件、服务与支持,通过提供全面的企业级互联网数据解决方案,帮助各种规模、行业的企业更卓效地运营,致力于成为电子商务数据分析领域的“SAP”。 99click的创业故事与SAP有着惊人的相似 正如SAP敏锐预见ERP将成为推动全球产业发展升级的IT力量一样,99click的创立基于同样的商业洞察和预见:电子商务将成为时代潮流,在企业互联网化的过程中,通过网络获取数据以更快作出反应,将成为企业在竞争中获胜的关键。
于是,早在2005年,凭借着在硅谷多年的技术视野和研发水平,99click率先将领先的技术理念应用于电子商务领域,推出了第一个帮助企业开展互联网业务的全能数据系统(采集、管理、处理、分析)SiteFlow®。 至此开始,99click将与数百家主流电子商务网站并肩工作的经验总结,不断融入SiteFlow®,形成了完整清晰的数据框架与实用的功能构成,以及一整套关于网络商务数据的,出色的分析方法和解决方案。 又如SAP 坚持30年只专注研究一种产品,由此成就了全世界排名第一的ERP软件,99click在业内也以专注著称。其创立9年时间,始终专注于SiteFlow®一个系列产品的研发创新,推出了多项独家专利技术。
9年时间内,所有用户一共加起来,累计故障时间还不到2小时。这在世界领域内,都绝对一流。 SiteFlow®从浩瀚的互联网数据中挖掘出了“抓住用户、留住用户”的密码。通过99click出色的数据分析技术,企业可以分析用户从何处进入网站起,到站内搜索、行走路径、浏览页面等各种行为,从而掌握客户的消费习惯;从导航结构、消费流程、页面内容布局的合理性等多方面来优化网站结构和营销方案、最终提高网站转化率、提升用户黏性,促进销售。 99click和SAP一样都相信数据是企业的核心资源和发展动力。SiteFlow®自推出以来,迅速获得了行业认可,成了企业开展电子商务首屈一指的软件品牌和标准配置,连续9年保持市场第一。
能在纳斯达克上市的几家中国电商企业,背后都有99click的身影。 当然99click与sap也有着不同之处 1.价格不同 不同于SAP管理软件的天价收费,99click立足于本土市场,提供完全实用、费用合理的解决方案。99click坚持高性价比的产品理念,给用户提供免费的基础服务和升级服务,每年升级次数15次以上,保证所有客户享受最新功能。 2.服务模式不同 “客户需要的是能以最低成本在最短时间内创造出最高价值的解决方案。” 99click一直坚持这样的理念。因此,99click摒弃了软件套装销售的方式,而是采用高度灵活的SAAS模式,企业购买软件后能马上使用,不需要再做硬件的投入,企业的运维成本因此大大降低;同时也降低了软件的应用门槛,用户只需在web上注册登录,即可使用。 3.服务对象不同 只要客户拥有自己的网站,能在网上开展业务,哪怕是简单的网络推广和优化,或者单独的网络广告投放,或者更直接在线销售商品,都可以成为99click服务的对象。99click可以帮助客户采集一切在网络上生成的数据:广告、访客、产品、订单……。99click的数据是基于网络的实时更新数据,采用的技术手段也是基于网络;而SAP管理的是历史数据,而且大部分是离线的。” 99click的产品对于中国电子商务的发展意义,与当年SAP发明ERP推动管理革新一样,都是通过超越行业水平的产品,给客户创造非凡价值。
未来,电子商务发展无论是“烧钱圈地”还是“理性发展”,都需要依托第三方数据分析的“智囊团”来制定快速高效的决策。而以99click为领军的第三方数据分析服务,势必会扮演重要角色。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14