
数据分析揭示VC界的“贝比·鲁斯”效应
"如何打出全垒打:我会用尽我十二成的全部功力进行挥杆,就像要将棒球给击穿一样...你对球棒握得越实,你击打棒球的力度就会越大,球就能飞得越远。在我用尽吃奶的力进行挥杆的时候,我有可能大力命中,也有很大的可能是三振出局收场。” -- 贝比·鲁斯
众所周知,那些刚从事VC行业的新兵所碰到的最困难的问题之一,就是如何内化“贝比·鲁斯效应”这个概念。
如果要让所有的投资组合都产生高额的投资回报率,你必须对其中的每一个投资都应用上精确的评估分析方法。但是令人惊讶的是,包括来自赌马、赌场、以及投资等的更行各业的领军人物,他们都强调的却是另外一面,投行称之为”贝比·鲁斯效应“:虽然贝比·鲁斯(卓越的VC)有过不少的三振出局(失败/亏损的投资)的经历,但这并不妨碍他成为史上最伟大的击球手(风头公司)之一。 -- 出自"贝比·鲁斯效应:频率和量级“
贝比·鲁斯效应在不同种类的投资中都会碰上,但是在风投行业尤为显著。如注明投资人Peter Thiel所观察的一样:
事实上[风投]回报率是呈非常严重的偏态分布的。一个VC对这个偏态分布认知的越深入,他就越会是个优秀的VC。而糟糕的VC则倾向于认为回报曲线是成正态分布的,比如,误以为所有的公司都是在同等条件下诞生的,只是有些最终做死了,有些半死不活,而有些却在成长着而已。而事实上它们是遵循幂次法则的分布规律的(更多有关Peter Thiel对幂次法则和正态分布的描述,请查看本人官网之前的一篇文章《创业圣经《从0到1》读书笔记精简版》)。
贝比·鲁斯效应之所以这么难以内化主要是因为人们心理上都倾向于逃避亏损。行为经济学早有非常著名的演示,表明人们对于损失一定金额的情绪低落程度,远大于赚取同等金额的情绪的愉悦程度。亏损总会让人感觉不爽,即使这个亏损只是成功的投资组合战略中的一小部分而已。
当人们谈论到这个话题的时候,往往是难以深入,因为此前我们很难得到一份综合有效的风投公司的效益数据。而今天,大家走运了,非常感谢在众多风投基金公司中都备受尊重的投资人Horsley Bridge,他给我提供了这数百个风投公司自1985年起的投资回报率相关的匿名历史数据。
事实如我们预期一样,回报是非常集中的:大约占有这些公司所有投资组合的6%的投资(大约占所有投资金额的4.5%),产生的投资回报率却占有了全部投资回报率的60个百分比左右。下面我们再对这些数据作深入的挖深,看下优秀的VC和糟糕的VC是怎么被区分开来的。
全垒打(编者注:也就是说该风投公司不少的投资组合都是获得超过10倍投资回报率的): 如我们所预期的,成功的风投公司拥有更多的“全垒打”级别的投资。
(本文的所有图表中,X轴指代的是VC基金的效益:靠右的代表卓越的VC基金,靠左的代表糟糕的VC基金。)
卓越的风投基金公司不但会有更多的高投资回报率投资组合,且这些投资组合的投资回报率往往都是高得超乎想象的。请看下图中描述的低效益和高效益的风投基金在都是全垒打(超过10倍的投资回报率)的情况下的投资回报率的差别。
通常好的风投基金的投资回报率是在20倍左右,而卓越的风投基金的投资回报率则高达70倍,如Bill Curley曾经说过的:“风投不仅仅是一个全垒打的生意,还是一个大灌满的生意。“
三振出局(失败的投资):这里的Y轴代表的是一个风投基金的众多投资组合中亏损的投资所占的百分比。
从图中可以得知,其实无论是糟糕的投资公司还是卓越的投资公司,他们的投资组合中都有不少一部分是亏损的。所以说风投行业本身就是一门高风险的生意。
大家可以看到上图是呈U字型分布的,也就是说卓越的风投公司其实比普通的(处于图表中间的)风投公司更容易投到亏损的公司。所以这里卓越的风投基金公司刚好印证了上面所说的”贝比·鲁斯效应“效应:它们挥杆(投资)力度越大,有可能大力命中,也有可能三振出局(亏损)收场。但是你如果不敢冒着大量的三振出局(失败)的风险,你就不可能有大满贯(众多投资组合无数倍的投资回报率)的可能。比如,根据幂次法则,只要你的众多投资组合中有一个如Facebook般的公司,就算你所有的其他投资组合都是亏钱的,你依然会赚得盘满钵满!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28