
高考估分太头疼?大数据算法或成预测成绩新方式
刚刚落幕的高考年复一年的吸引着整个社会的关注,大数据文摘首先预祝每一位考生都发挥出了最好的表现。通过这样的终结考试测试一个学生知识和能力已经成为社会普遍接受的方式。美国高校正在尝试一种新的成绩预测方式,125所学校正悄然采取此项措施,试图利用算法和学生平时表现预测学生成绩。
涵盖数以万计学生上百万个成绩单的数据算法
多年以来,每当学生问起诸如“我会在这门课上得到A吗” 这类问题的时候,Stephanie Dupaul就会开玩笑地说要向她收集的占卜玩具“魔法8球”寻求答案。如今,她可以给她的学生比用占卜玩具更加准确的答案。
Dupaul是南方卫理公会大学(Southern MethodistUniversity)招生管理的助理院长,也是日益增长的,正在利用已毕业学生的学业表现数据来预测在学学生的学业表现的大学管理者中的一员。在美国,大约已有125所学校正悄然采取此项措施,通常涉及组合利用累计多年的,涵盖了数以万计毕业生上百万个成绩单的数据。
这项措施和亚马逊,谷歌等技术大鳄利用数据预测消费者的购买行为如出一辙。当许多综合性大学和文理学院开始采取这项措施之后,辍学者的人数明显下降,而随之毕业率稳步上升。这些初期立竿见影的效果已引起了奥巴马政府的关注。在上周举行的白宫高等教育峰会上,奥巴马政府强调学校要更加彻底地利用数据来提高毕业率。
而对于学校来说,回报远远不只是毕业率的提高:学生成绩的数据跟踪还可以让学校从那些表现稳定的学生那里持续收入教学费,从而避免了因学生辍学而提高的招生成本。根据录取咨询公司Noel-Levitz估算,私立大学要花费2433美金,而4年制公立大学则要花费457美金来录取一个本科新生。
Dupaul提到:提高毕业率“不仅关乎学校的生源和声望,还得说,它的确影响学校排名”。
对南方卫理公会大学来说,数据分析显示那些提早申请录取的学生往往最终会拿到学位。同样的,那些在招生录取开始之前就来参观学校,加入兄弟会或是姐妹会,或是选修了超过平均数量课程的学生,也能顺利毕业。
通过这样或那样的认知,南方卫理公会大学建立了一个预测算法,用来估计一个学生是否能够顺利完成学业的概率。对可能无法顺利毕业的学生,学校通过学业顾问或是学院院长的介入来帮助他们。
其他大学也利用细化的数据以确保学生一开学就保持稳定的学业水平。比如在乔治亚州立大学,学校分析了250万个已毕业生的成绩信息来了解到底那些因素会影响在校生的毕业率。从2012年开始,学校建立起针对低于全美大学平均毕业率的早期预警系统。去年,这个系统对于那些处于学业困难状态,却对此浑然不觉的学生发出了34,000次警报。
这个系统通过识别风险模式来提前警告学生,以免他们在课业上栽跟头。比如乔治亚州立大学的数据显示用学生第一门专业课的成绩可以预测他们是否能够毕业。以政治学专业为例,在第一门专业课中拿到A或者B的学生,他们中有85%将会取得学位。相比之下,只拿到C或是更差成绩的学生,取得学位百分比降到25%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25