京公网安备 11010802034615号
经营许可证编号:京B2-20210330
高考估分太头疼?大数据算法或成预测成绩新方式
刚刚落幕的高考年复一年的吸引着整个社会的关注,大数据文摘首先预祝每一位考生都发挥出了最好的表现。通过这样的终结考试测试一个学生知识和能力已经成为社会普遍接受的方式。美国高校正在尝试一种新的成绩预测方式,125所学校正悄然采取此项措施,试图利用算法和学生平时表现预测学生成绩。
涵盖数以万计学生上百万个成绩单的数据算法
多年以来,每当学生问起诸如“我会在这门课上得到A吗” 这类问题的时候,Stephanie Dupaul就会开玩笑地说要向她收集的占卜玩具“魔法8球”寻求答案。如今,她可以给她的学生比用占卜玩具更加准确的答案。
Dupaul是南方卫理公会大学(Southern MethodistUniversity)招生管理的助理院长,也是日益增长的,正在利用已毕业学生的学业表现数据来预测在学学生的学业表现的大学管理者中的一员。在美国,大约已有125所学校正悄然采取此项措施,通常涉及组合利用累计多年的,涵盖了数以万计毕业生上百万个成绩单的数据。
这项措施和亚马逊,谷歌等技术大鳄利用数据预测消费者的购买行为如出一辙。当许多综合性大学和文理学院开始采取这项措施之后,辍学者的人数明显下降,而随之毕业率稳步上升。这些初期立竿见影的效果已引起了奥巴马政府的关注。在上周举行的白宫高等教育峰会上,奥巴马政府强调学校要更加彻底地利用数据来提高毕业率。
而对于学校来说,回报远远不只是毕业率的提高:学生成绩的数据跟踪还可以让学校从那些表现稳定的学生那里持续收入教学费,从而避免了因学生辍学而提高的招生成本。根据录取咨询公司Noel-Levitz估算,私立大学要花费2433美金,而4年制公立大学则要花费457美金来录取一个本科新生。
Dupaul提到:提高毕业率“不仅关乎学校的生源和声望,还得说,它的确影响学校排名”。
对南方卫理公会大学来说,数据分析显示那些提早申请录取的学生往往最终会拿到学位。同样的,那些在招生录取开始之前就来参观学校,加入兄弟会或是姐妹会,或是选修了超过平均数量课程的学生,也能顺利毕业。
通过这样或那样的认知,南方卫理公会大学建立了一个预测算法,用来估计一个学生是否能够顺利完成学业的概率。对可能无法顺利毕业的学生,学校通过学业顾问或是学院院长的介入来帮助他们。
其他大学也利用细化的数据以确保学生一开学就保持稳定的学业水平。比如在乔治亚州立大学,学校分析了250万个已毕业生的成绩信息来了解到底那些因素会影响在校生的毕业率。从2012年开始,学校建立起针对低于全美大学平均毕业率的早期预警系统。去年,这个系统对于那些处于学业困难状态,却对此浑然不觉的学生发出了34,000次警报。
这个系统通过识别风险模式来提前警告学生,以免他们在课业上栽跟头。比如乔治亚州立大学的数据显示用学生第一门专业课的成绩可以预测他们是否能够毕业。以政治学专业为例,在第一门专业课中拿到A或者B的学生,他们中有85%将会取得学位。相比之下,只拿到C或是更差成绩的学生,取得学位百分比降到25%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12