京公网安备 11010802034615号
经营许可证编号:京B2-20210330
消费者网上购物的平均时间,拿去年的6月跟今年的6月比较,从20分钟减少到了17分钟。另一方面,客户停留在网站上的时间减少的同时,多数电商的转化率只有0.5%左右。
在注意力越来越分散的今天,99.5%的客户是流失掉的,电商要如何去了解这群客户的购物行为特征,并且使之转化为订单量。
困境:客户停留时间在减少。
时间是一个很稀缺的资源。
对于电商来讲,人均浏览网页的时间,就是正在变得稀缺的竞争资源。
从图二可以发现,每天覆盖的人数,购物网站(包括淘宝)的流量增长是68%,但是人均当天在线浏览的时间(在电商这边)减少了16%。网上购物的时间,拿上一年的6月跟今年的6月比较,则从20分钟减少到了17分钟。
我们细致地看一下各家网站(见图三)会发现同样的情况:京东、卓越、当当、凡客、梦芭莎,这几家代表性的B2C中,我们发现大部分流量是增长的,但是如果 我们看一下这些网站人均的当日浏览时间,京东上一年是10分钟左右,今年则只有8分钟左右。那么,这是由于现在的网站找东西更有效,所以浏览网站的时间更 少一点,还是其他原因?
其实,我们可以用其他的数据挖掘一下,到底是网站的有效性小了,还是总的时间少了?我觉得其中一个很重要的东西是每个网站在争取一个顾客进来以后,它在8分钟里做了哪些事情。
电商的眼球经济只有17分钟,这是总的平均数,也即平均每个网民在电子商务网站会停留17分钟。淘宝商城、京东商城,如果我们真的把它们浏览的时间拿走的话,你会发现其他的网站所拿到的流量就会很小。
而用户停留在网站上的有效购物时间减少的同时,电商的转化率却普遍不是很高。
从访问到购物车,平均来讲,100个人进来,只有4.5个人把东西放到购物车,有96个人不会把东西放到购物车,那这96个人干吗呢?
另外,我们可以看到,京东商城下单到在线支付的百分比是29.4%,凡客诚品是29%,一号店是8.3%。
追寻流失客户购物行为特征
先让我们看一下图五的数据。
图五这个数据蓝色部分显示的35%,是指只有35%的人是今天来、今天买的;65%的人是以前来、今天才买的。这里的65%说的是新客户,不是老客户,新 客户今天来到这个网站,今天就买了。从下往上第二格红色,是昨天来、今天买的客户;绿色的是2-6天前来的、今天才买的客户;最高的那个橙色是21天之前 来的、今天买的顾客。当然,这个数据,每个行业都有差别,不完全一样。
从数据我们可以发现,客户从访问页面到最终付款,所用的时间是不一样的。有的用户是第一天下单,隔了一个星期才付款。尤其是一些非标准、无品牌的产品,消费者比价情况普遍,导致从访问到下单购买时间更长。(我为此访谈过部分国内电商,数据基本一致但百分比不一样。)
所以,电商业者会发现,当天来到网站的人不能完全用漏斗(图六)来看,因为他来之前压根就没想买你的东西,他只是过来看一下这个产品便宜还是贵。面对这样的顾客,你就更需要知道他们到了网站之后做了什么事情。
首先,网站可以问,客户在下单之前浏览过哪些页面和产品,他的浏览历史非常重要。
其次,要了解清楚,正在网站上浏览的客户,哪些是明确要来买东西的,哪些只是随便来逛逛的,以及他们从什么入口进入;
第三,没有购买的用户,到底看了多少产品页,多少放进购物车没有付款,多少是一个产品页都没有看的;
第四,多少客户把产品放进购物车隔天才付款的。
此外,非常重要的是,客户登录网站首页之后,除了有40%的弹出率之外,剩下60%的用户分别是从搜索、分类购物和引导购物等渠道进入,作为电商来讲,应该了解他们从哪个渠道进入到产品页面、三个渠道进入之后付款的比例分别是多少,从中找出问题所在。
这一思路与网站整体的架构相关,目前国内关注还比较少,但是先可以尝试用这个思路去看存在的问题。
最后,最想告诉读者的是,用这些简单的方法,就能知道没有付款的消费者的购物行为,只有了解他们的购物行为特征,才可以让这溜走的99.5%的用户产生付款,从而提升网站转化率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20