京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代移动营销十大趋势_数据分析师考试
一、智能终端成为数字营销的主战场
智能终端将成为数字营销的主战场,广告主需要及时调整营销战略,合理分配营销预算,并结合企业自身特点,积极布局移动营销领域。
二、大数据的应用让移动营销更精准
依托大数据为驱动力将使得移动营销更加精准、投资回报率更高。大数据的应用让移动营销更精准体现在三个方面:精准定制产品;精准信息推送;精准推荐服务。
三、移动电商改变整个市场营销生态
移动电子商务则正在改变整个市场营销的生态。智能手机和平板电脑的普及,上网流量资费的降低,大量移动电商平台的创建,为消费者提供了更多便利的购物选择。移动电商购物良好的消费体验,例如比实体店更低的价格,丰富的产品选择,简便的购物流程,安全的支付系统,快捷的物流配送等,都为移动电商市场规模的扩大创造了条件。
四、新型城镇和农村成移动新蓝海
随着国家新型城镇化战略的实施和移动终端网络的不断普及,三四线城市、新兴城镇和农村市场成为移动电商的新蓝海。
五、App营销是移动营销主要形式
现阶段移动互联网流量主要由各种App产生,App产生的流量占70%以上,无疑,App成为移动营销的主要形式。庞大的App数量和广告形成两个巨大长尾市场,通过大数据分析可以让用户在合适的时间、合适的地点、合适的场景,看到合适的广告信息。无论是线下安装还是用户主动下载的App,都需要增强用户体验,提供奖励优惠,激励用户参与,建立情景消费联想。
六、本地化移动营销市场空间广阔
本地化移动营销的核心发展主要体现在以下三个领域:一是增强现实,二是移动支付,三是游戏化。比方说百度地图和麦当劳联合推出的樱花甜筒跑酷活动。打开百度地图,或是使用“附近”、“搜索”功能,会看到一个漂浮在地图上的甜筒标志。这是百度地图结合LBS大数据分析和智能推送技术,对麦当劳甜品站周边三公里的用户进行匹配,挑选部分用户推送了“樱花甜筒跑酷0元抢”的优惠信息。用户在规定时间内跑到麦当劳甜品站,就可以免费领取樱花甜筒。这种两家企业结合自身优势推广的活动,很快引起了“樱花风暴”,实现了共赢。
七、移动营销打造O2O营销新模式
在移动互联时代,企业需要思考如何将线上和线下有效整合,将线上的推广活动转化为实际的销售。例如,星巴克曾推出一款“早安闹钟”App与目标消费者深度沟通,用户下载星巴克“早安闹钟”App后,设定起床闹铃,闹铃响起后的1小时内,走进任意一家星巴克门店,可享受早餐新品半价的优惠。
八、RTB成移动广告投放主导模式
RTB(RealTimeBidding)实时竞价,是一种利用第三方技术在数以百万计的网站上针对每一个用户展示行为进行评估以及出价的竞价技术。与大量购买投放频次不同,实时竞价规避了无效的受众到达,针对有意义的用户进行购买。据调研公司eMarketer预测,在美国,程序化广告投放将继续作为相关的显示广告投放中的最大份额,而RTB广告投放将占程序化投放的最大份额。
九、多屏整合成移动营销必然趋势
华通明略(MillwardBrown)发布的最新报告显示,中国消费者使用智能手机、平板电脑等多屏媒体的频率要高于世界上任何其他地区。多屏整合将成为移动营销的主导方向。这里的多屏整合包含两层含义:一是多屏整合的大数据分析。用户可以同时使用手机屏、iPad屏、电脑屏、电视屏、户外屏等终端,数字广告平台需要知道用户在多屏上浏览的信息和行为模式,从而通过跨屏来修正和完善对消费者的认知,让移动广告投放更精准更有效。事实上,百度、阿里巴巴和腾讯等互联网巨头已经开始在做跨屏的数据分析。二是多屏的整合营销。即将智能手机与PC电脑、电视、户外广告等进行较好的关联和互动,实现线上线下的整合推广。
十、建立战略联盟是移动营销平台方向
大数据时代,大数据、技术和创意将是移动数字营销公司的核心竞争优势。建立战略联盟是移动营销平台发展的必然选择,数字营销公司建立战略联盟可以通过以下途径:一是大型互联网企业之间的战略联盟。例如,阿里巴巴集团和优酷土豆集团在展开全面合作,共同推进中国营销领域的DT化进程(DataTechnology)。优酷土豆和阿里妈妈还分别发布了基于大数据的精准营销方案“星战计划”和开放数据管理平台“达摩盘”(AlimamaDMP)。二是数字广告平台与移动媒体之间的战略联盟。例如,与多盟合作的App媒体超过7.7万,日均PV1.8亿,与App媒体的深度合作,奠定了多盟在移动广告平台领域的领导地位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05