京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据做P2P风评风控只是理论可行
中国P2P平台交易规模的增速,比指数增长的陡峭曲线还狂放。据易观智库数据显示,中国P2P平台交易规模2011年为96.7亿元, 2014年中国P2P平台的交易规模跃升为2012.6亿元,四年间几乎有了20倍以上的增幅。但随着市场规模的扩大、参与P2P业务的企业数量暴增,P2P网贷平台的乱象也由此而生,在2013年开始出现卷款跑路事件,2014年出现跑路等问题的P2P平台数量多达275家。
虽然从P2P平台诞生的那一刻起,几乎所有的P2P企业都在说风控,但事实上中国P2P平台的风控一直在红色警戒线边缘。陆金所传出2.5亿元坏账虽然最终被落实在Lfex业务上,而非之前猜测的P2P业务,但让普通投资者了解到这些P2P平台的风险水平已成了燃眉之急,利用大数据技术来做P2P网贷平台风险评级和风险控制,已经成了行业继续发展必须迈过的一道坎。P2P平台风险评级虽然不去控制风险,但可以客观上反应P2P网贷平台信用等级和风险控制能力,对投资者来说有重要的参加价值。
孤立封闭的数据难以形成大数据
5月11日,笔者受邀参加了“中国P2P网贷平台风险评价体系专家研讨会”,本次研讨会由理财魔方(北京口袋财富信息科技有限公司)、中央财经大学中国互联网经济研究院、易观智库共同主办,目的就是探讨用量化的评价体系来评价P2P网贷平台的风险。
据该项目执行者之一、中央财经大学互联网研究院助理研究员赵宣凯介绍,该P2P网贷平台风险评级体系有三个特征:第一,主要是从投资者角度出发,帮助用户识别P2P网贷平台的风险,为投资者选择哪个网贷平台提供一个科学的依据;第二,是以数据驱动为核心,通过理财魔方独有的监控引擎获得大量P2P平台数据,从这些数据出发,避免人为打分和设定权重所带来的主观臆断;第三,该评级从既有纯客观的统计方法,还包括主观判断为辅,综合这两个方法最终得出P2P网贷平台的风险排名。
随着专家学者和行业代表讨论的深入,专家们对利用大数据和评级模型的探索给与肯定,但也提出了现在整个大数据风险评级诸如数据采集困难、真实性和一致性难以保持一致的现实性问题,这不仅是几家评级机构能解决的问题,而是整个P2P行业需要克服的顽疾。
社科院金融所书记副所长何德旭教授在发言直接指出,社科院也在做P2P网贷平台的评价体系,主观评价体系和客观评价体系各有优缺点,但目前用大数据做P2P平台评价体系最大的问题就是数据。第一,到现在为止近两千家P2P平台的数据,估计都拿不到;第二,拿到的数据难以保证是不是真实的;第三,数据统计口径带来的数据不一致;第四,指标体系的选取和指标的赋值要有主观确定,这会造成最终结果的差异性。
利用大数据做P2P平台风险评价体系,理论上来说是非常理想的方法手段,但落实过程中需要对数据采集和清洗过程中会遇到很多挑战。尤其是互联网金融法律法规尚未健全的今天,P2P平台没有义务向第三方机构或者投资者提供关键的运营数据和重大项目信息披露,第三方机构只能通过网上舆情监控和公开交易信息来获得所谓的数据,但这些数据通常都按照“报喜不报忧”的原则被人为修饰和过滤了,自然也就难以P2P平台真实的运营情况和风险状况,基本上只有等到盖子捂不住了,才会爆出卷款跑路的新闻,但这时再去做风险评估,对投资者和贷款者都已经是为时已晚。但解决之道要做数据链的相互比对和筛选,理财魔方和易观在采集数据时会采用直接采集和向P2P企业直接咨询两种方式相结合的方式,尽管目前还无法约束P2P企业的吹牛和隐瞒行为,但未来如果数据更丰富、更全面,那么数据的可靠性和评级的准确性都有望得到进一步提升。
按照理想状态,大数据应该是不同企业、不同部门共享而成,它可以真实、动态地反映个人和企业的经济状况和信用等级,但目前各家企业对数据都是抱着封闭独享的态度,而且就我观察,大多数中小型P2P企业只有数据收集能力,而缺乏数据挖掘和利用能力。
在P2P风险控制层面,在之前采访P2P企业中谈及风控,大家都会不约而同地说用大数据来做风控,但再去细问,大多数都是语焉不详,这既有商业机密的考量,但我认为更重要的原因是大数据挖掘的能力不足大致的,大数据真正的技术含量和价值体现在提取和利用上,而不在于对数据的占有。目前国内的数据大多处于独立孤岛,很难形成由共享而成的数据链和数据网,而这恰恰是大数据风控所需要的。
此次P2P网贷平台风险评价体系的探索,有可能会去倒逼评级机构尽可能多地去获取大数据,甚至用O2O的方式去做数据验证和清洗,因为数据是这个客观数据评级体系的命脉,如果在信息披露和风控都相对规范的龙头企业带头,则有可能形成高透明度、高诚信企业自制的局面。
大数据风险评级到底有没有真疗效?
利用大数据技术来做互联网金融机构的风险评级和风险控制,在理论上几乎无争议,但在实际行动中却困难重重,大数据识别风险的现实路径是否存在?还需要我们付出巨大的努力。
在研讨会上提问环节,我对利用来做大数据风险评级和风险控制的实现路径做了两种路径猜测,第一是国家主管部门利用法律法规来强制公开P2P平台基本的运营信息,以供金融投资者和贷款者来作为选择的依据,另一种是采用市场化的方案,谁拿出自己的数据来分享,就可以分享到量级对等的其他数据源,这有点像过去电驴和BT下载的P2P机制类似。
当向专家提出这两种实现路径哪一种近期更有可能实现,从专家们的回答中,我认为他们对这两种实现路径都很审慎。在与一位来自金融监管部门的专家私下交流时,他指出当107号文件明确了P2P归属银监会监管之后,其他有P2P业务相关的部门都在等待着银监会出台监管细则,以避免与之发生监管规则上的冲突,而对于银监会而言,现在P2P平台监管还没有非常健全和完善的国际通行标准和规范,所以其制定过程也会相对谨慎,周期也可能比希望的更长。
而P2P平台对于信息公开和数据分享的态度也是截然不同的,相对而言一些规模较大、运行相对规范的P2P平台更愿意分享他们的数据,这是彰显实力的好方法;而另外一些P2P平台运营涉嫌设立资金池等违规行为,就会对公开信息非常抵触,所以希望P2P企业自律、自觉提供真实数据,虽然短期看还很难实现,但未来有可能是一个趋势和方向,谁都希望把贷款放在一个公开透明的平台。
风险评级体系首先要从完善大数据机制开始
利用风险评价体系来评定P2P网贷平台的风险,从初衷上是值得肯定的。如中国人民银行金融研究所李博博士所言,评级体系可以借给投资者一双慧眼,同时也帮助监管者对市场进行梳理,评级机构有三个原则一定要恪守:第一是独立,第二是专业,第三是公正。模型和数据都可以通过迭代更新来不断优化,但P2P网贷评级体系的初衷一定要有所坚持,方能对P2P产业的发展起到应有的促进和警示作用。
现在不管是客观数据为主的评级体系,还是以专家意见为主的主管评级体系,归根结底都需要庞大的数据链来做做最基本的支撑,否则算法和模型再好,没有真实有效的数据也是在做无用功。
如果要拿一把尺子去做量具,最先要保证的就是这把尺子的刻度精准。针对P2P网贷平台的评价体系也是如此,其评级体系必须有辅以科学、完备的大数据采集、清洗、提炼和利用机制,这也是结论正确的前提和重要保证。
2015年的中国P2P网贷平台依然火爆,但风险也在逐渐累积,而利用大数据进行风险评级和风险控制的美好愿望尽管理论可行,但在现实还存在诸多挑战。但不管阻力和困难有多大,借助大数据做风险评级和风险控制又是势在必行之举,我们在征信问题落下的课必须要补上,这既是在还历史的欠债,也是在为中国互联网金融的铺设未来之路,既然是绕不过去的坎,那就直面现实勇敢应对吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18