京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新华保险理赔大数据教您如何投保_数据分析师考试
日前,新华保险发布2014年理赔数据。 通过大数据解读与分析,新华保险从专业角度为您个人保险的选择总结三大法宝:“首选重疾”、“必备意外”、“保额充足”。从理赔总体来看,2014年新华保险个险理赔累计给付26.49亿元,较2013年增长19.16%;其中重疾和特种疾病的增幅最为显著,分别为29.55%和166.98%。从理赔身故类分析,占比前三位分别为恶性肿瘤、意外事故、心脑血管疾病,因此,客户首要的保险需求是重疾、意外险。 其中男性风险明显高于女性, 男性应该有更高的保险意识,购买一定额度重疾和意外险产品。
2014年,公司个险重疾赔付12982件,其中,恶性肿瘤赔付8410件,占比高达52%。女性患癌比例高于男性,易患癌器官中女性乳腺及生殖系统占比最高, 女性购买保险应以选择重疾产品为主。从重疾类型分析,在恶性肿瘤赔付种类中,乳腺恶性肿瘤的赔付占比最高,为17.67%;其次是甲状腺恶性肿瘤14.72%; 第三是支气管和肺部恶性肿瘤11.43%。 北京大学肿瘤医院2013年数据显示,目前癌症的5年生存率为37%,甲状腺癌5年生存率高达89%;其次是乳腺癌81%,常见的子宫/宫颈癌的5年生存率超过60%。赔付数据中数量占比较多的恶性肿瘤,5年存活率均较高,而早发现、早治疗和充足的经济支持是前提。
据卫生部信息中心统计, 人的一生罹患重疾的概率高达72%, 手术治疗的平均费用在10万元(不包括化疗费、营养费、收入损失等),88.32%的客户重疾保额低于10万,尚不能支持基本的治疗费用。 从重疾赔付金额来看,61.40%的重疾保额在0~5万,占比最高,仅1.69%客户重疾保额高于15万。 从赔付年龄看,40~49岁客户重疾赔付占比最大,为40.52%,出险客户中年龄在30~59岁的占比达86.93%,该年龄客户是家庭经济收入来源的主力。如何合理地规划保险? 一要首选重疾。 因重疾呈现年轻化趋势,且年龄小费率低,健康状况好,易标准承保,因此宜尽早投保。同时,应为全家配备重疾保障。第二,必备意外。 在身故赔付中,意外事故占比15.95%,因此请务必配备意外险,尤其是风险较高的男性。第三,保额充足。从理赔数据看,大多数客户的身故/重疾保额在10万元以下, 保障功能体现不明显, 建议重新检视自己的保单,通过产品组合的方式,提升保障额度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31