京公网安备 11010802034615号
经营许可证编号:京B2-20210330
酒水营销未来看好“大数据”2_数据分析师
对于广告主来说,酒水广告发布的核心问题在于:如何从海量数据中寻找目标受众,并投放相应的广告信息。
大数据能通过互联网点击流,可跟踪个体用户的行为,更新其偏爱,并实时模仿其可能的行为,让点对点的RTB(实时竞价广告)成为可能。在美国,在大数据的帮助下,RTB能把炙手可热的目标用户,拍卖给广告商。以前,电梯里,上来一个小学生,如果你在电梯里打的是酒企广告,那肯定瞎了。现在,有了RTB,广告将盯住不是满地跑的“学生”,而是那个喜欢看广告的目标人;广告市场上卖的也不是传统意义上的广告位了,而是访问这个广告位的具体用户。
顾问式营销
比如当一个顾客进入店铺后,一个零售商利用大数据技术搜索他们的数据库,发现这位顾客是其希望留住的有价值顾客,之后他们通过将其过去的购物历史和Facebook主页获得的这位顾客的信息综合起来,来了解需要花多少钱来留住他,从而确定所售卖物品的合适价格和零售商可以退让的利润空间,并最终针对这一位顾客给出最佳的优惠策略和个性化的沟通方式。
如今在美国沃尔玛大卖场,当收银员扫描完顾客所选购的商品后,POS机上会显示出一些附加信息,然后售货员会友好提醒顾客:“我们商场刚进两三种配酒佳料,并正在促销,位于D5货架上,您要购买吗?”这时,顾客也许会惊讶地说:“啊,谢谢你,我正想要,刚才一直没找到,那我现在再去买。”
这就是沃尔玛在大数据系统支持下实现的“顾问式营销”的一个实例。因为计算机系统早就算计好了,如果顾客的购物车中有不少酒企、红酒和沙拉,则有80%的可能需要买配酒小菜、佐料了。而提供这一决策分析支持的就是其位于美国一个庞大的、通过卫星与全球所有卖场实时连通的企业级数据仓库。
大数据时代,
要为营销准备什么?
虽然大数据展示非凡的前景和巨大作用,不过,大数据营销仍面临不少问题与挑战。首先面临的是技术难题,毕竟大数据技术尚处于活跃前期,各方面技术并不太扎实,各项工具需要进一步完善。但实际情况是,真正启动大数据营销,你面临的不仅仅是技术和工具问题,更重要的是酒企要转变经营思维和组织架构,来真正地挖掘那座数据金矿。
确定短中期目标和标准
大数据的资源极大繁杂丰富,如果酒企没有明确的目标,就算没有走入迷途至少会觉得非常迷茫。因此,首先,要确定酒企运用大数据的短中期目标,定义企业的价值数据标准,之后再使用那些能够解决特定领域问题的工具。逐步推广,步步为营,不要把理想定得太高,否则失望会愈大。
储备相关技术人才
酒企运用大数据为营销管理服务之前,技术团队要到位是基础。酒企的营销团队要能够非常自如地玩转数据。许多人认为社交媒体营销人是个有趣的工作,其实只是个艰苦的活儿。它非常注重数据、衡量标准和数据可视化等问题。要能熟悉驾驭,首先要确保企业技术人员已经接受过相关技能培训,了解如何最大化利用大数据的作用和潜力为企业营销服务。
解决碎片化问题
酒企启动大数据营销一个最重要的挑战,是数据的碎片化,各自为政。许多公司组织中,数据都散落在互不连通的数据库中,而且相应的数据技术也都存在于不同部门中,如何将这些孤立错位的数据库打通、互联,并且实现技术共享,才是能够最大化大数据价值的关键。酒企营销者当留意的是,数据策略要成功提升网络营销成效,要诀在于无缝对接网络营销的每一步骤,从数据收集、到数据挖掘、应用、提取洞悉、报表等。
内部整合能力培养
要做好大数据的酒企市场营销运用,其一,酒企要有较强的整合数据的能力,整合与来自企业各种不同的数据源、各种不同结构的数据,如客户关系管理、搜索、移动、社交媒体、网络分析工具、普查数据以及离线数据,这些整合而得的数据是定向更大目标受众的基础;其二,酒企要有研究探索数据背后价值的能力。未来营销成功的关键将取决于如何在大数据库中挖掘更丰富的营销价值。像是站内、站外的数据整合、多方平台的数据接轨、结合人口与行为数据去建立优化算法等都是未来的发展重点;其三,探索出来之后给予精确行动的营销指导纲领,同时通过此纲领进行精确快速实时性行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15