
酒水营销未来看好“大数据”_数据分析师培训
目前大部分酒企经营决策面临的最大挑战不是缺少数据,而是数据太多,面对这些只是静态、孤立、无多大参考意义的“初级品”的信息数据,酒企信息部门如何通过系统功能来有效利用和整合,发掘有价值的数据,给公司营销管理提供决策支持,已成为摆在企业信息部门及其它管理部门面前的难题。
如今“大数据”可谓是风起云涌,红红火火,俨然成为信息技术领域最时髦的词汇。IBM、微软、Oracle、SAP等IT巨鳄,像是寻找到了新的金矿,开始全力挖掘大数据,多方位推广大数据理念,争抢“头烫汤”。而众多中小IT厂商也跟着蜂拥而至,以分得大数据市场一杯羹。
面对浩如烟海的客户及市场、销售和服务信息,酒企如果没有一个具有高度商业智能的数据分析和处理系统是不可想象的。一个优秀的大数据系统更能将数据挖掘技术与现有技术很好地结合起来,将特殊领域的商业逻辑与数据仓库技术集成起来,找出对未来企业战略具有影响的因素,使数据挖掘的分析效果和效益尽可能达到峰值。
大数据,重构酒企精确营销模式
大数据时代之前,酒企多从哪些平台提取数据、利用哪些营销数据?一般是CRM或BI系统中的顾客信息、市场促销、广告活动、展览等结构化数据以及企业官网一些数据。但这些信息只能达到酒企正常营销管理需求的10%的量能,并不足够给出一个重要洞察和发现规律。
而其它85%的数据,诸如社交媒体数据、邮件数据、地理位置、音视频等这类不断增加的信息数据,和包括数据量更大、逐渐广泛应用、以传感器为主的物联网信息,以及风起云涌的移动3G互联网信息,等等,这些就是大数据所指的非结构性或者叫做多元机构性所需的数据,它们更多以图片、视频等方式,几年前可能被置之度外,不会被运用,价值尚未被有效地挖掘,而今大数据能进一步提高算法和机器分析的作用,这类数据在如今竞争激烈的酒企市场却日显宝贵、作用突出,并能被大数据技术所充分挖掘、运用。
对营销决策数据进行更好的优化
包括沃尔玛、家乐福、麦当劳等知名企业的一些主要门店均安装了搜集运营数据的装置,用于跟踪客户互动、店内客流和预订情况,研究人员可以对菜单变化、餐厅设计以及顾问意见等是如何对物流和销售额的影响进行建模。这些企业可将这些数据与交易记录相结合起来,并利用大数据工具展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助这些领先零售企业减少了17%的存货,同时增加了高利润率自有品牌商品的比例。这对我们酒企富有借鉴意义。
以前的系统,只能促使分析报告回答“发生了什么事”,现在一个优秀的大数据系统已可以被用来回答“为什么会发生这种事”,而且一些关联数据库还可以预言“将要发生什么事”,最终发展为非常活跃的数据仓库,从而能判断“你(用户)想要什么事发生”。据称,集成整合服务技术的Oracle大数据平台已能为用户提供面向策略级、未知信息分析预测能力和个性化自助式定制等。
更完整的分析、描述
通过获取更丰富的消费者数据,包括网站浏览数据、社交数据和地理追踪数据等,可以绘制出更完整的消费者行为描述。譬如,大数据技术能对客人方方面面的信息进行充分有效管理并深度挖掘。
如果某个客人是某酒店的老主顾,那么该大数据系统就会向酒店提供个性化服务,清楚告知酒店经理人这位客人的习惯和喜好,如是否喜欢靠路边,是否吸烟,是否喜欢大床,喜欢什么样的早餐,甚至从事什么工作,有什么商务需求,等等。当客人再次光临时,不用客人自己提出来,酒店大数据系统就会自动提供客人所喜欢的房间和服务等相关信息,大大提升酒店管理效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29