京公网安备 11010802034615号
经营许可证编号:京B2-20210330
酒水营销未来看好“大数据”_数据分析师培训
目前大部分酒企经营决策面临的最大挑战不是缺少数据,而是数据太多,面对这些只是静态、孤立、无多大参考意义的“初级品”的信息数据,酒企信息部门如何通过系统功能来有效利用和整合,发掘有价值的数据,给公司营销管理提供决策支持,已成为摆在企业信息部门及其它管理部门面前的难题。
如今“大数据”可谓是风起云涌,红红火火,俨然成为信息技术领域最时髦的词汇。IBM、微软、Oracle、SAP等IT巨鳄,像是寻找到了新的金矿,开始全力挖掘大数据,多方位推广大数据理念,争抢“头烫汤”。而众多中小IT厂商也跟着蜂拥而至,以分得大数据市场一杯羹。
面对浩如烟海的客户及市场、销售和服务信息,酒企如果没有一个具有高度商业智能的数据分析和处理系统是不可想象的。一个优秀的大数据系统更能将数据挖掘技术与现有技术很好地结合起来,将特殊领域的商业逻辑与数据仓库技术集成起来,找出对未来企业战略具有影响的因素,使数据挖掘的分析效果和效益尽可能达到峰值。
大数据,重构酒企精确营销模式
大数据时代之前,酒企多从哪些平台提取数据、利用哪些营销数据?一般是CRM或BI系统中的顾客信息、市场促销、广告活动、展览等结构化数据以及企业官网一些数据。但这些信息只能达到酒企正常营销管理需求的10%的量能,并不足够给出一个重要洞察和发现规律。
而其它85%的数据,诸如社交媒体数据、邮件数据、地理位置、音视频等这类不断增加的信息数据,和包括数据量更大、逐渐广泛应用、以传感器为主的物联网信息,以及风起云涌的移动3G互联网信息,等等,这些就是大数据所指的非结构性或者叫做多元机构性所需的数据,它们更多以图片、视频等方式,几年前可能被置之度外,不会被运用,价值尚未被有效地挖掘,而今大数据能进一步提高算法和机器分析的作用,这类数据在如今竞争激烈的酒企市场却日显宝贵、作用突出,并能被大数据技术所充分挖掘、运用。
对营销决策数据进行更好的优化
包括沃尔玛、家乐福、麦当劳等知名企业的一些主要门店均安装了搜集运营数据的装置,用于跟踪客户互动、店内客流和预订情况,研究人员可以对菜单变化、餐厅设计以及顾问意见等是如何对物流和销售额的影响进行建模。这些企业可将这些数据与交易记录相结合起来,并利用大数据工具展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助这些领先零售企业减少了17%的存货,同时增加了高利润率自有品牌商品的比例。这对我们酒企富有借鉴意义。
以前的系统,只能促使分析报告回答“发生了什么事”,现在一个优秀的大数据系统已可以被用来回答“为什么会发生这种事”,而且一些关联数据库还可以预言“将要发生什么事”,最终发展为非常活跃的数据仓库,从而能判断“你(用户)想要什么事发生”。据称,集成整合服务技术的Oracle大数据平台已能为用户提供面向策略级、未知信息分析预测能力和个性化自助式定制等。
更完整的分析、描述
通过获取更丰富的消费者数据,包括网站浏览数据、社交数据和地理追踪数据等,可以绘制出更完整的消费者行为描述。譬如,大数据技术能对客人方方面面的信息进行充分有效管理并深度挖掘。
如果某个客人是某酒店的老主顾,那么该大数据系统就会向酒店提供个性化服务,清楚告知酒店经理人这位客人的习惯和喜好,如是否喜欢靠路边,是否吸烟,是否喜欢大床,喜欢什么样的早餐,甚至从事什么工作,有什么商务需求,等等。当客人再次光临时,不用客人自己提出来,酒店大数据系统就会自动提供客人所喜欢的房间和服务等相关信息,大大提升酒店管理效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27