京公网安备 11010802034615号
经营许可证编号:京B2-20210330
没有大数据支撑的WiFi是没有未来的_数据分析师考试
大数据可谓当下IT领域最时髦的词,其实可以简单的定义为海量数据的获取和存储;而目前说到大数据,我们首先能想到的就是“云计算”、“Hadoop”等。但是大数据远远不仅局限于此。
深耕数据挖掘形成数据环
作为2015年最火的名词之一大数据已经被很多企业所重视。而这之前也有很多企业在数据收集这一块不断努力着。而目前我所在的商用WiFi行业,所强调的盈利模式之一就是大数据。但是目前为止,真正做到大数据盈利的运营商少之又少。主要原因就是目前我们所掌握的数据都是孤立的,并没有形成连贯的,封闭的数据环。这些数据并不能作为企业营销的依据。所以目前商用WiFi对于数据的掌握还有很大的一步需要走。虽然目前很多大型商场也都在努力建设自己的免费WiFi服务,希望能在为顾客提供更好服务的同时,也以此抓取每一位网络用户的消费能力、消费轨迹,对这些数据加以分析和整合,据此投放更精准的服务和促销信息。但是因为目前很多商家采集的数据很多都是一些数据孤岛,根本不能够形成一个闭环式的数据链,所以在这一块很有很大的进步空间。
大数据与O2O之千丝万缕
2015年互联网 被提出以后各行各业都开始注重与互联网的联系,这样O2O得到了飞速的发展。而O2O的本质通过线上资源给线下商户引流并且数据最终回到线上。这种情况下商用WiFi作为撬开O2O大门的砖头就扮演重要角色。目前超过90%的智能手机用户会选择WiFi上网,98.%的平板电脑用户会使用WiFi上网,其中53.6%的用户只使用WiFi上网。由此可见不管在何时何地用户对WiFi的依赖已经远远超过了总理都嫌弃的流量。
而WiFi为的作为O2O的敲门砖就显示出了大数据与O2O之前的千丝万缕的联系。O2O的本质是数据再次回到线上,经过分析、提炼得出客人的消费习惯以及消费轨迹进行更加精准的信息推送。但是目前O2O的数据采集以及分析都还是孤立的。因为O2O的数据存在于线上与线下,很多线上的数据存放在运营者的手里。但是线下的数据我们该如何采集,如何掌握就成了问题。目前对于线下数据的采集主要通过如手机APP、电子凭证验证设备等通过某种方式将信息统一收集、整理。不过目前这些仍处于收集阶段,并没有对有用数据做到分析使其增值。所以如何借助数据采集去逐个收集,集中分析和处理得到我们想要的东西对于O2O是至关重要的。
大数据支撑商用WiFi
目前中国的商用WiFi发展与国外相比虽然仍处于初期阶段,但是国内商用WiFi的市场竞争已经异常激烈了。而商用WiFi从最开始的portal广告、流量分析到现在与O2O的紧密结合,利用大数据做精准营销已经成为时代的必然。目前我们的数据采集还处于萌芽阶段并不完善,而如何利用商用WiFi收集的数据来引流,已经成为很多公司最关心的核心领域。数据获取仅仅是一个开始,更为重要的是数据的闭环以及服务的输出。
当用户在iFree WiFi覆盖的范围内不仅可以使用安全稳定高速的免费WiFi还可以获取附近店铺的优惠信息。当客人在中午的时候连接iFreeWiFi 就会收到附近餐厅的优惠券并且准确告诉你餐厅的位置。而且在iFreeWiFi覆盖的餐厅内客人是可以选择WiFi pay买单,直接抵扣了优惠券,这样不仅可以消除客人核销优惠券的尴尬还可以省去排队买单或者等待服务员核对的时间。同时客人在店铺的逗留时间,消费信息等数据会被记录下来,而通过这些数据就可以来分析客人的消费习惯、爱好以及他下一个消费环节在哪?通过数据分析得出结论来给商户吸引客流量。但是如果所有数据不能形成一个闭环的连贯的数据链,那么数据孤岛就是必然会出现的。而商用WiFi目前最需要做的就是让这些数据形成一个数据环,能够通过数据分析出一个人或者是一群人的下一个消费环节在哪?
虽然大数据在商用WiFi行业里还有很多缺陷要完善,但不可否认其是企业未来必须拥有的工具之一,也是商用WiFi行业里必不可少的提升运营服务能力的工具。如何把商用WiFi、O2O、大数据相结合打造商用WiFi生态产业链条,将成为未来商用WiFi企业探索的方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22