
浅谈P2P评级背后的“大数据”_数据分析师考试
P2P的发展,给国内的金融市场带来了翻天覆地的变化,同时,也为国内金融市场衍生了许多需求,比如第三方支付,比如担保公司,再比如评级。
据响当当从第三方了解的行业数据显示:截至2015年4月,全国有1819家运营平台,成交量达551.45亿元。去年4月份,运营平台数量为1073家,成交量为148.92亿元。可见,在过去的一年中,P2P行业的成交量翻了近4倍。
P2P平台数量迅速膨胀,他们在享受行业盛宴的同时,也饱尝残酷竞争之苦。“增信”是他们需要完成的重要任务,有的P2P平台大肆宣传自己与第三方支付公司的资金托管合作;有的平台打出自己与银行的“亲密关系”或干脆直接“抱大腿”;有的则狐假虎威的直接将一些机构的“评级结果”亮出来。
无疑,在跑路潮这个人心惶惶的P2P行情下,投资者面对鱼龙混杂的P2P平台,真正需要的是一些投资的指导和意见。而一份可靠公正的评级报告则是对平台的“雪中送炭”,而为平台加分不少。在过去的一段时间里,很多机构发布了各种各样“排名”、“黑名单”等评级报告。据了解,这些机构大多是自掏腰包完成报告的,他们“赔本赚吆喝”的背后是希望借助评级掌握P2P的行业话语权。
当前,P2P评级主要是针对平台的整体评级。有的评级机构会对平台进行深入调查,包括对平台自身的调查和向其他平台了解情况,但这样的机构并不多。不少机构采用的数据主要来自各种公开信息和P2P平台自行报送,这些数据的真实性和准确性有待考察。以坏账核算为例,目前各家平台对于坏账率的界定标准和计算方式差距较大。一般来说,P2P平台采用坏账总额除以贷款总额的方式核算坏账。逾期时间大多分为三个月、六个月、九个月、一年不等,各家平台逾期时间的选择并无统一标准,一些平台为了拉低坏账率故意设定较长的逾期时间。很多时候,评级机构并未对数据进行核实,或对平台实地调查,因此不少评级结果缺乏可信度和公信力。
其实,P2P评级面临的最大问题是数据获取。坏账率、利润、产品这些内容属于P2P平台的敏感数据,评级机构没有权利要求强制披露,只能基于信息可获取、可量化两个标准评出平台发展指数。在数据缺失的前提下,评价平台的安全性是比较困难的。
更为重要的是,P2P评级目前来说,很难形成可持续发展的商业模式。为什么呢?按照国外和债券市场的经验,评级应由被评价主体付费,即P2P平台自己来付评级费。但国内目前P2P平台很少主动要求做评级,其一,网贷平台不愿公开真实数据;其二,网贷平台不愿花这笔“冤枉钱”。而后出现的情况也就在意料之中了:很多P2P评级报告都是评级机构自己掏腰包做的,他们占领话语权、炒作提高知名度的诉求成为其他商业机会和利润来源。
很多人没有意识到这个问题的严重性,事实上这是一个很现实的问题。在此借用“没有买卖就没有杀害”好像不太恰当,但却很贴切。有供必有求。评级机构需要生存,所以找到买单者至关重要。响当当风控总监从业界内了解到内幕:“一些所谓的评级机构会追着平台做评级,只要平台花几万块钱,就能获得想要的排名。还有一些机构有"敲诈"嫌疑,平台如果不花钱,就给你弄个类似"黑名单"的东西。”也就是说,这些评级机构一边靠P2P公司养活,一边又给他们评级。这又爱又恨的关系使得这些公司或者机构在评级时很容易“感情用事”。
归根结底,鉴于国内的金融环境,P2P发展的核心始终取决于自身运营模式及风控手段。相较于其他互联网理财平台,响当当首创三重风控,典当兜底的风控模式,一切债券均有实物抵押,即使借款人对响当当逾期还款,典当行的“绝当品变现”机制,也能完美的避免响当当平台对投资人的违约。响当当典当合作,实物理财的互联网金融新模式,无疑在目前的P2P行业乱象内“出淤泥而不染,濯清涟而不妖。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18