京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈P2P评级背后的“大数据”_数据分析师考试
P2P的发展,给国内的金融市场带来了翻天覆地的变化,同时,也为国内金融市场衍生了许多需求,比如第三方支付,比如担保公司,再比如评级。
据响当当从第三方了解的行业数据显示:截至2015年4月,全国有1819家运营平台,成交量达551.45亿元。去年4月份,运营平台数量为1073家,成交量为148.92亿元。可见,在过去的一年中,P2P行业的成交量翻了近4倍。
P2P平台数量迅速膨胀,他们在享受行业盛宴的同时,也饱尝残酷竞争之苦。“增信”是他们需要完成的重要任务,有的P2P平台大肆宣传自己与第三方支付公司的资金托管合作;有的平台打出自己与银行的“亲密关系”或干脆直接“抱大腿”;有的则狐假虎威的直接将一些机构的“评级结果”亮出来。
无疑,在跑路潮这个人心惶惶的P2P行情下,投资者面对鱼龙混杂的P2P平台,真正需要的是一些投资的指导和意见。而一份可靠公正的评级报告则是对平台的“雪中送炭”,而为平台加分不少。在过去的一段时间里,很多机构发布了各种各样“排名”、“黑名单”等评级报告。据了解,这些机构大多是自掏腰包完成报告的,他们“赔本赚吆喝”的背后是希望借助评级掌握P2P的行业话语权。
当前,P2P评级主要是针对平台的整体评级。有的评级机构会对平台进行深入调查,包括对平台自身的调查和向其他平台了解情况,但这样的机构并不多。不少机构采用的数据主要来自各种公开信息和P2P平台自行报送,这些数据的真实性和准确性有待考察。以坏账核算为例,目前各家平台对于坏账率的界定标准和计算方式差距较大。一般来说,P2P平台采用坏账总额除以贷款总额的方式核算坏账。逾期时间大多分为三个月、六个月、九个月、一年不等,各家平台逾期时间的选择并无统一标准,一些平台为了拉低坏账率故意设定较长的逾期时间。很多时候,评级机构并未对数据进行核实,或对平台实地调查,因此不少评级结果缺乏可信度和公信力。
其实,P2P评级面临的最大问题是数据获取。坏账率、利润、产品这些内容属于P2P平台的敏感数据,评级机构没有权利要求强制披露,只能基于信息可获取、可量化两个标准评出平台发展指数。在数据缺失的前提下,评价平台的安全性是比较困难的。
更为重要的是,P2P评级目前来说,很难形成可持续发展的商业模式。为什么呢?按照国外和债券市场的经验,评级应由被评价主体付费,即P2P平台自己来付评级费。但国内目前P2P平台很少主动要求做评级,其一,网贷平台不愿公开真实数据;其二,网贷平台不愿花这笔“冤枉钱”。而后出现的情况也就在意料之中了:很多P2P评级报告都是评级机构自己掏腰包做的,他们占领话语权、炒作提高知名度的诉求成为其他商业机会和利润来源。
很多人没有意识到这个问题的严重性,事实上这是一个很现实的问题。在此借用“没有买卖就没有杀害”好像不太恰当,但却很贴切。有供必有求。评级机构需要生存,所以找到买单者至关重要。响当当风控总监从业界内了解到内幕:“一些所谓的评级机构会追着平台做评级,只要平台花几万块钱,就能获得想要的排名。还有一些机构有"敲诈"嫌疑,平台如果不花钱,就给你弄个类似"黑名单"的东西。”也就是说,这些评级机构一边靠P2P公司养活,一边又给他们评级。这又爱又恨的关系使得这些公司或者机构在评级时很容易“感情用事”。
归根结底,鉴于国内的金融环境,P2P发展的核心始终取决于自身运营模式及风控手段。相较于其他互联网理财平台,响当当首创三重风控,典当兜底的风控模式,一切债券均有实物抵押,即使借款人对响当当逾期还款,典当行的“绝当品变现”机制,也能完美的避免响当当平台对投资人的违约。响当当典当合作,实物理财的互联网金融新模式,无疑在目前的P2P行业乱象内“出淤泥而不染,濯清涟而不妖。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22