京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代自学考试数据管理_数据分析师考试
自学考试是我国高等教育的重要组成部分。随着大数据时代的到来,高等教育自学考试要向更高层次发展,就必须积极引进网络和多媒体技术,实现大量数据的采集、统计、计算、分析等方面的工作,实现高效、规范、科学的管理流程,推动自学考试改革创新、持续健康地发展。
提升教学技术。大数据促进自学考试教育创新。现代教学评价正在从终结性评价向过程性评价过渡,增强了过程性考核的诊断功能。加强自考生学习过程的考核是自学考试改革的一个组成部分。学习全过程的量化考核成绩可分为考生考试成绩和学习行为素质表现量化考核成绩。吉林省已经启动自学考试“网络学习综合评价”(以下简称“综合评价”)系统,为考生提供更加优质和便捷的学习辅导,对于考生的综合评价,主要包括网上课程学习30%(课件学习时长及知识点测评)、网上阶段测评40%、网上综合测评20%及平时的学习表现10%四部分,系统给出这门课程的综合评价成绩。通过参加“网络学习综合评价”,考生可以对课程知识点进行全面、系统的梳理,较好地把握课程重点和难点知识,提高自己学习的能力,有效提高课程理论考试成绩。通过数据统计,2014年吉林省自学考试有7000多人参加“网络学习综合评价”,其中绝大多数考生综合评价成绩在八九十分。实行过程考核和国家统一考试相结合的学业综合评价办法,无疑会使自学考试考评体系对人才的评价更加全面和科学,而自学考试大数据为其提供了坚实的基础。
推进改革创新。通过精确跟踪自学考试报名考试数据和在线课堂等学习平台上获取的数据,对考生学习轨迹的移动进行更准确、广泛的比较研究。深入了解考生来源、层次分布、专业需求以及在学习活动中的接收效果,及时有效整合教育资源和调整教学内容。以吉林省2014年下半年自学考试报考数据为例,通过报考数据还可以统计分析出各专业报考情况及各科目报考情况;社会考生、二学历考生、高职高专考生分布情况等等。此外,还可以把报考数据进行横向比较,获取报考人数的变化、报考科次的变化以及新生报考人数、报考科次及报考专业的变化等等,做到纵向到底、横向到边、全方位的统计分析。从报考数据我们可以统计出缺考人次、违纪人次、及格率(总及格率、实考及格率、各科目及格率)、各科目分数段,甚至各题的得分情况等等。通过对报考数据进行科学的分析研究,对教学效果进行量化的描述,为选择和修正考试方法和考试内容提供科学的根据和指导。
虽然大数据拥有巨大的发展潜力,但是数据的安全性、隐私性、数据的可得性以及可用性问题,日益受到人们的关注。越来越多的人开始收集相关数据,他们是否会故意透露这些数据或通过社交媒体张贴,甚至在不知不觉中公布了一些具体的数字细节,从而泄露他人隐私,影响人们的正常生活。所以,自学考试数据信息的安全保密工作就显得尤为重要。
分析自学考试巨大的数据集会使人们产生虚假的信心,导致做出不合理甚至错误的决定。此外,这些数据被别有用心的人或机构滥用,以达到他们想要的结果,这些问题在一定程度上阻碍了自学考试的健康发展。
目前,自学考试数据管理亟需解决的问题是:
数据管理各自为战,不成体系。在传统的数据管理模式下,考试管理机构内部存在着详细的人员分工,有的管理新生注册数据,有的负责报考数据,有的管理毕业数据。各部门之间数据格式不一样,影响自学考试工作正常进行。随着自学考试的发展,资源利用率低、数据冗余等问题出现。因此,大数据时代自学考试数据管理需要更新思路。
随着大数据时代的到来,自学考试数据的管理应从三个层面展开:
第一层面是理论。从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。同时,需要走出目前认识上的误区,即大不等于多,大数据时代应该更加强调数据的有效性。
第二层面是技术。自学考试应根据大数据的发展趋势,尽快开发设计出合理的、实用的计算机数据处理应用程序,使自学考试数据管理工作走上信息化和程序化的轨道。
第三层面是实践。建立新的自学考试管理系统,实现计算机对自学考试各个环节的全面管理,包括建立健全各类数据电子信息定期收集整理制度、利用数据库管理系统对数据进行集中管理和发布、配备数据管理员,实现有效管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19