
大数据时代自学考试数据管理_数据分析师考试
自学考试是我国高等教育的重要组成部分。随着大数据时代的到来,高等教育自学考试要向更高层次发展,就必须积极引进网络和多媒体技术,实现大量数据的采集、统计、计算、分析等方面的工作,实现高效、规范、科学的管理流程,推动自学考试改革创新、持续健康地发展。
提升教学技术。大数据促进自学考试教育创新。现代教学评价正在从终结性评价向过程性评价过渡,增强了过程性考核的诊断功能。加强自考生学习过程的考核是自学考试改革的一个组成部分。学习全过程的量化考核成绩可分为考生考试成绩和学习行为素质表现量化考核成绩。吉林省已经启动自学考试“网络学习综合评价”(以下简称“综合评价”)系统,为考生提供更加优质和便捷的学习辅导,对于考生的综合评价,主要包括网上课程学习30%(课件学习时长及知识点测评)、网上阶段测评40%、网上综合测评20%及平时的学习表现10%四部分,系统给出这门课程的综合评价成绩。通过参加“网络学习综合评价”,考生可以对课程知识点进行全面、系统的梳理,较好地把握课程重点和难点知识,提高自己学习的能力,有效提高课程理论考试成绩。通过数据统计,2014年吉林省自学考试有7000多人参加“网络学习综合评价”,其中绝大多数考生综合评价成绩在八九十分。实行过程考核和国家统一考试相结合的学业综合评价办法,无疑会使自学考试考评体系对人才的评价更加全面和科学,而自学考试大数据为其提供了坚实的基础。
推进改革创新。通过精确跟踪自学考试报名考试数据和在线课堂等学习平台上获取的数据,对考生学习轨迹的移动进行更准确、广泛的比较研究。深入了解考生来源、层次分布、专业需求以及在学习活动中的接收效果,及时有效整合教育资源和调整教学内容。以吉林省2014年下半年自学考试报考数据为例,通过报考数据还可以统计分析出各专业报考情况及各科目报考情况;社会考生、二学历考生、高职高专考生分布情况等等。此外,还可以把报考数据进行横向比较,获取报考人数的变化、报考科次的变化以及新生报考人数、报考科次及报考专业的变化等等,做到纵向到底、横向到边、全方位的统计分析。从报考数据我们可以统计出缺考人次、违纪人次、及格率(总及格率、实考及格率、各科目及格率)、各科目分数段,甚至各题的得分情况等等。通过对报考数据进行科学的分析研究,对教学效果进行量化的描述,为选择和修正考试方法和考试内容提供科学的根据和指导。
虽然大数据拥有巨大的发展潜力,但是数据的安全性、隐私性、数据的可得性以及可用性问题,日益受到人们的关注。越来越多的人开始收集相关数据,他们是否会故意透露这些数据或通过社交媒体张贴,甚至在不知不觉中公布了一些具体的数字细节,从而泄露他人隐私,影响人们的正常生活。所以,自学考试数据信息的安全保密工作就显得尤为重要。
分析自学考试巨大的数据集会使人们产生虚假的信心,导致做出不合理甚至错误的决定。此外,这些数据被别有用心的人或机构滥用,以达到他们想要的结果,这些问题在一定程度上阻碍了自学考试的健康发展。
目前,自学考试数据管理亟需解决的问题是:
数据管理各自为战,不成体系。在传统的数据管理模式下,考试管理机构内部存在着详细的人员分工,有的管理新生注册数据,有的负责报考数据,有的管理毕业数据。各部门之间数据格式不一样,影响自学考试工作正常进行。随着自学考试的发展,资源利用率低、数据冗余等问题出现。因此,大数据时代自学考试数据管理需要更新思路。
随着大数据时代的到来,自学考试数据的管理应从三个层面展开:
第一层面是理论。从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。同时,需要走出目前认识上的误区,即大不等于多,大数据时代应该更加强调数据的有效性。
第二层面是技术。自学考试应根据大数据的发展趋势,尽快开发设计出合理的、实用的计算机数据处理应用程序,使自学考试数据管理工作走上信息化和程序化的轨道。
第三层面是实践。建立新的自学考试管理系统,实现计算机对自学考试各个环节的全面管理,包括建立健全各类数据电子信息定期收集整理制度、利用数据库管理系统对数据进行集中管理和发布、配备数据管理员,实现有效管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18