
那些大数据不能告诉你的事儿_数据分析师培训
从Facebook火到Weibo的How-Old网站是Microsoft最新的小玩具。用户上载一张带有人像的照片,网站会猜测照片之中人物年 龄与性别的网站。How-Old起源其实是在2015微软软件开发大会上的一个“小意外”,在大会第二天的主题报告中,Microsoft在做面部识别 API的演示,起先开发者只是希望会有五十个人来测试,结果出乎意料地有超过三万五千人来测试,超过二十一万张照片被上载到网站上(其中两万九千张来自土 耳其)。更有意思的是,据网站流量监测公司Alexa显示,所有how-old访问者中,35.7%来自美国,而随居其后的便是来自中国访问者,占了访问 流量的13.3%。
许多人在社交网站上晒经how-old探测过的照片,而大部分网站所猜测的年龄都与实际不符,晒照的人大多是本着“看起来比实际年龄年轻”的心理在晒照。这虽然看起来好玩又无害的小程式,其实反映了机器、数据和“真我”这一哲学问题的关系。
让我们从十八世纪德国的投币体重计说起:放进一个便士,体重计就显示体重。有意思的是,这些体重计上面写着“he who weighs himself, lives well,he who lives well,knows himself well”。直接将对于体重的了解与对于自己的了解联系了起来:那些称重的人是了解自己的人。这些投币体重计内置各式各样的小游戏来吸引顾客,有的会给顾 客糖果(这一想法现在来看有点疯狂:为什么要给量体重的人更多卡路里?也从另一方面说明了当时人们并不会像现代人一样对摄入卡路里吹毛求疵),有的会算 命,还有的会在顾客站上体重计前猜测顾客的体重,如果猜测的体重与真实体重相符,所投硬币就会还给顾客。随后不久,这些投币体重计在各个公众场合被广泛应 用。一开始这些体重计的主要顾客是男性(因为当时女性的理想身形为“珠圆玉润”型)。但到1920年,随着节食等运动的兴起,用户主要变成女性。
从十八世纪放置于公共空间的投币体重计到现在几乎家家常见的家用大数据分析体重计,变化的不只是体重器摆设的地方,更是对于身体的自我管制(body policing),自我认知,社会审美,和对于“美”的定义的变化。
Body policing不得不让人联想到最新的Apple Watch和各种fit band健康手环,美国一保险公司本着节省成本的宗旨将这些手环发给客户,根据数据来判断健康风险,及时给客户提供健康建议。
这些由各种高科技产品和数码程序所产生的数据,成为了最客观的代表事实的数据-姑且将这些产品测量的准确性和拥有这些高科技产品的社会族群特征搁置一边-这些数据,特别是在有法律冲突时,被当作原始、真实、公正的数据来看待。这些数据被赋予了“事实”的代表力。
再回到how-old网站,虽然微软一直强调上载的图片数据不会被保存,但是看似好玩的、旨在博君一笑的小应用,是否也在某个时刻为自己加强了自 信?更不用说此应用对于性别的识别,”男性“和”女性“的特征在how-old网站上是被程式所定义的,这更加体现的性别的“人造性”-说到底,写 code的还是人。除去对于”男性“和”女性“的猜测,其他性别是否可以被猜测出来,还是how-old把不同性别了了划分为男和女两个类别?
总的来说,这些发展都体现了”被数据化的个体“(quantified self)这一现象,我们对于自己的认知很大程度上来自于各种由机器产生的数据:90和150的差距不仅仅是60斤而是”瘦“和”胖“,25和55不仅仅是30年的人生经验,而是”年轻“和”老去“的距离。
生活习惯,年轻年老,胖瘦美丑,这些事虽然都可以用数据衡量,但数据不能告诉我们人生的经历与故事,也许你是正在24小时坐着赶deadline的 论文党,或是因健康原因而不能节食减肥的美女帅哥,又或是心理年龄55的青年,这些机器都不能告诉你这些简单的藏在被机器所定义的“不运动”、“过度肥 胖”背后的原因。
随着日常生活中各种科技的普及,各种个人信息和身体的信息都被记录、保存、显示在仪器、程序代码和数据中心中。在享受科技为我们带来的生活便利的同 时, 我们更应该保持警惕。一是这些科技公司都是赢利性组织,因此数据被存放在哪里?多长时间?在什么情况下可以被哪种方式利用?二是这些数据也在不自觉中影响 着我们对自己的认知,这些数据化的表达,被当作科学的、准确的“事实”,而这些机器所测量的精准度有时常常被忽略。三是这些商品是否也借助放大了社会的不 平等?只有拥有Apple Watch和Fit Band才能拿到的数据,是否也从一个方面忽略了无法负担这些产品的社会阶层,否定了他们对于自己身体认知的权利和能力?总的来讲,科技从来都不是价值中 立(Value free)的,在设计科技产品的过程中,相应的社会价值在无形之中被写入、固定、再生产在这些产品中。甚至连桥梁这种看似功能明显而直接的科技,也可以在 无形之中变成增强种族歧视的工具:Robert Moses,纽约建筑大师,在Long Island所建造的将近两百个桥中,都对桥的高度和宽度采用了一定限制,而这些看似无害的建筑标准,却阻止了公车的通行,而正巧在1920年代,乘坐公 车的大部分是黑人和收入较低的社会族群,而能负担的起私家轿车的人们却可以畅行无阻,这些桥梁建设反而加深了社会的不平等和限制了这一族群的流动性。
所以,不必太纠结How-Old把你的年龄估计的过高或过低,因为科技永远无法代替我们对于自己的了解,也终将不会成为定义我们的工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04