
大数据下的企业信息化-基础应用_数据分析师
在各种媒体的连篇累牍的报到和宣传下,我们的大多数企业对“大数据”一词想必都不陌生。无论是对于走在社会发展前沿的互联网、IT产业,亦或是传统的医药、交通行业,大数据必将带来难以估量的价值。在企业信息化过程中,若掌握对大数据的处理能力,可在今后的信息化发展应用上取得领先地位。面对如今的大数据时代,正在进行信息化改革的工业企业要把握好大数据带来的机遇,紧跟信息时代的潮流。企业信息化过程中的数据安全管理
大数据环境下,信息系统之间是互连的,他们之间会形成一个息息相关的生态圈。大数据的环境会带来一定的风险,比如:企业自身的商业机密在数据共享时会被泄露;很多敏感数据的所有权和使用权没有被明确界定;数据量的存储和安防措施不够有力等。数据具有共享性,我们在保证数据在大环境下共享的同时,还要注意数据的安全性。我们的信息安全管理工作内容之一就是保证数据在传递过程中不会被篡改和泄露。企业在进行信息化建设时,要加强对数据安全问题的控制和管理,以解决大数据时代带来的新的数据安全性问题,所以大数据时代信息安全管理任重而道远。
企业信息化建设中的大数据基础平台建设
大数据时代的发展需要完善的信息基础平台,而现有的供电局信息基础架构还不足以满足大数据时代的发展需求。我们在进行信息基础平台的建设和完善时,不仅要增加信息系统的计算能力和数据消化能力,还要重视对数据资源的扩展和融合。业界普遍认为,现今的云计算技术能够搭建一个信息基础设施平台,满足各类工业企业对数据服务的需要。所以,我们的供电局如果要搭建和完善信息基础平台,应该利用好云计算技术,把自身对大数据的存储和处理能力进一步提高。
企业信息应用系统逐渐迈入整合化、智能化时代
大数据技术最吸引工业企业的地方不在于它的“大”,而在于数据的“用”--整合、分析、利用等。我们的企业在信息化建设过程中总是会产生大量的数据,这是一种不可避免的现象。而此时,如何将那些海量的数据加以整合和利用是目前企业进一步加强信息化建设遭遇的必须要解决的拦路虎。大数据信息应用系统对如何利用好数据具有不可估量的价值,而在大数据应用系统发挥作用前,企业急需对系统模型和数据规范进行统一和整合。我们的企业在大数据时代的发展和推动下,将信息应用系统推动到智能化的阶段。
为工业企业信息化提供环境保障
建立起企业现代化建设的激励机制,切实提高企业的信息化水平。进一步加大企业的信息化水平、不断推动企业管理模式的创新,加强技术合作领域的创新型发展,引进国外先进的经验和创新发展的实例来促进企业信息化,不断推动企业整体水平的提高,改造落后的生产管理模式来加强企业的发展进步,使得信息技术能够真正为工业企业的发展提供力量,为企业信息化创造条件。在大数据时代,工业企业也要充分利用各种形式、各种媒体来加大企业的信息宣传力度,增强企业的最新信息技术的更新普及,使得企业形成良好的信息化氛围。另外,企业也可以利用好大数据时代的信息化来建立起网络化的服务平台,使得工业企业的形象以及服务能力得到进一步提升。
企业在大数据时代下面对的机遇和挑战
信息化建设中的缺陷
首先,我们的大多数企业在信息化建设中,都仅仅是对信息技术的简单应用,而没有意识到数据将带给我们的巨大价值。其次,很多大型的国有企业因为受到政策的保护而导致自身危机意识薄弱,在信息化建设中会慢半拍,落后于其他外资或合资企业。还有,许多企业在信息化建设中对大数据技术的重要性认识不够,在企业管理上缺乏对大数据的应用,导致企业管理高成本、低效率的局面。
把握住大数据时代带来的机遇
大数据时代的到来,会给企业带来革命性的影响。企业通过对大数据的分析和挖掘,可以优化自己的信息管理流程,逐渐变成精细化、数据驱动型的管理。企业传统的管理和运营模式会被改变,大数据将成为企业的决策中心,并提高企业对市场的反应能力和降低企业管理成本。不同行业、不同规模的企业在大数据发展中受到的影响程度也不同,总的来说,就是大数据技术应用越深,企业吸收的价值也越大。目前来看,企业主要需要做的就是利用大数据技术不断提升自己的信息化水平,并积极挖掘大数据的应用。
应对大数据的挑战措施
大数据时代的到来,为我们的企业带来机遇的同时,也带来了一些挑战。面对这些挑战我们的企业可以做出以下措施来应对:一是加强领域的合作,各相关技术领域的专家要加强合作与共赢;二是开发高效的数据密集型计算方法,科学家们需要加大研发力度;三是在信息化应用过程中不断进行调整,遇到具体问题要具体分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14