
掘金大数据,共享新未来_数据分析师考试
录入照片即可随时消费的“刷脸支付”技术、记录运动数据并进行健康综合评估的体重管理平台、扫描食品条形码查询生产和检测信息的“食品安全云”、输入数据即可推荐合适衣服的“试衣街”APP……
这些是正在举行的2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会上展出的大数据成果,在不远的未来它们将走进我们的生活。随着新一轮的信息技术与产业、经济和社会的深度融合,大数据日渐成为社会发展的战略性资源。围绕“融合”“开放”“安全”等趋势,中国正在不断加快推动大数据产业的创新发展。
中共中央政治局委员、国务院副总理马凯在参会期间指出,基于互联网的大数据与云计算、物联网一样都是新一代信息技术的重要标志,深刻影响着经济社会各个领域,是新时代最重要的战略资源之一,带来了巨大的商业机会和创业空间。
作为全球网民数量最多的国家、最大的电子信息产品生产基地和最具成长性的信息消费市场,中国目前已经成为世界重要的大数据资源集聚地和大数据应用市场,大数据产业快速发展,产业链加速形成,正在对经济社会发展发挥着越来越重要的作用。
据贵阳大数据交易所公布的《2015年中国大数据产业白皮书》显示,2014年中国大数据市场规模达到767亿元,同比增长27.83%,预计到2020年,中国大数据市场规模将达到8228.81亿元。大数据技术已经深入融合到金融、教育、医疗、农业、电信、交通等各个行业。
工业和信息化部副部长怀进鹏在会上表示,伴随着中国经济发展进入新常态,无论是保持中高速增长还是面向中高端水平,以及打造大众创业万众创新的新发展环境,大数据、云计算、移动互联网等新一代信息技术及其相互作用发展都将充当越来越重要的角色,并且已经成为世界发达国家科技和产业界竞相发展和竞争的焦点,在社会发展中担当着基础性、先导性、战略性地位。
怀进鹏表示,今年以来,国务院印发了《关于促进云计算创新发展培育信息产业新业态》《中国制造2025》等政策文件,正在制定并即将出台的“互联网+”推动计划将积极推动大数据、云计算、移动互联网等以现代技术的融合发展,这一系列的政策举措将为信息技术和产业发展创造更加有利的环境和条件。
马凯表示,中国政府将更好利用互联网、大数据、云计算,为大众创业、万众创新提供平台服务,推动经济提质增效升级和培育经济增长新引擎;促进政府转变职能,推动法治政府、服务政府、阳光政府、廉洁政府建设,提升治理能力和服务水平;不断提升公共服务能力,建设信息共享、公平普惠、便捷高效的民生服务体系,更好保障和改善民生。马凯还对开发好、利用好、管理好数据资源提出了五点建议,包括共促产业繁荣、共促技术创新、共促融合发展、共促数据开放和共促数据安全。
实际上,如何发展大数据已经成为国家、社会、产业的一个重要话题。目前,欧美、日韩等国已经将大数据上升为国家层面的战略。业内人士指出,作为一种重要的战略性资源,大数据未来的发展需要进一步依靠云计算、物联网、移动互联网等新兴计算形态和分析方法的技术创新与发展,同时也面临隐私保护、网络安全的挑战。
可以期待,未来随着中国大力推动大数据与产业和公共服务的融合,大数据的商业价值和社会价值会得以充分开发,将有效促进产业提质增效升级,推进政府治理和公共服务能力和水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14