
用城市大数据推进智能城市建设_数据分析师
智能城市也叫iCity。它的中国定义,已基本不同于IBM的“Smart City”,他们想做的是城市IT的smart系统,而中国则需要构建的是智能发展的城市,要将我国新型城镇化、深度信息化和工业化升级版深度融合。
其实,在2009年8月,IBM发布的《智慧地球赢在中国》就量身打造了六大智能解决方案:智慧电力、智慧供应链、智慧银行、智慧医疗、智慧城市、智慧交通。这些智慧方案,已经陆续在我国许多城市展开。
当前,我们中国的iCity发展正处于“四化”交集上。十八大号召,促进工业化、信息化、城镇化、农业现代化同步发展。iCity将深入推动信息化与城镇化、工业化之间的融合,具有全局意义。
因此,中国“智能城市”建设也应走中国特色道路。2012年,中国工程院立项了重大咨询研究项目《中国智能城市建设与推进战略研究》,其中智能城市的重点建设内容分5个部分:城市建设的智能化发展、城市信息的智能化发展、城市产业的智能化发展、城市管理的智能化发展以及城市人力资源的智能化发展。
这5个部分的重点建设内容,我们要怎么做呢?首先,要从应用着手,以实用性为目标,抓中国城市的核心问题和主要矛盾并解决;其次,要加强物联网,建设传感器网络,加强三元世界的彼此连接;最后,要打通大数据,打通数据孤岛,运用大数据,推进高水平应用和高水平决策。总的来说,我们应该用城市大数据和云平台来着手解决各种智能应用系统,如智能医疗、智能电网、智能交通等。
感知城市将成为城市努力打造的新名片
物联网是新一代信息技术的重要组成部分,也是信息化时代的重要发展阶段。实际上,它是互联网的延伸。因此,加强物联网必须先提高城市的网络带宽。在北京的“十二五”规划中,提升信息基础设施建设是一项重要内容。
此外,城市是国家战略的起始点和落脚点,面对源于能源消耗、交通运输等环节的严峻挑战,信息化成为形成城市核心竞争力的重要抓手。鉴于此,美国、德国、新加坡等国纷纷启动智慧城市、智能城市建设,而我们中国也提出了感知城市概念,推动着物联网、云计算等新一代信息技术思潮向政府和企业行动的转变。未来,感知城市将成为城市努力打造的新名片。
在中国,时值“十二五”开局之年,在调结构、转方式的国家战略发展要求下,感知城市建设已全面启动,这一热潮正改变着新一轮城市发展格局。
互联网的高速发展带动了物联网的发展,我们以物联网技术推动城市规划、建设、管理和服务智慧化,可以让城市变得更加安全、便捷、高效、绿色、和谐和幸福,形成以物联网助推智慧城市建设的特色道路,以此感知城市。
当然,物联网除了感知城市,也在感知物理世界、感知人类。越来越多的穿戴式设备正在向人机一体化方向发展,它们和手机及互联网+相连,将推动预防医学的发展。
智能城市离不开大数据的支持
大数据时代的到来,正悄然改变着人们的生活。得益于大数据的海量储存、分析与处理,人们能够运用大数据实现遥不可及的梦想。公共交通系统的动态数据公布后,可以通过手机APP为公众出行提供意见和方案,也能为交通高峰期调配出更优方案。
智能城市之所以迷人,在于它能为人们提供更安全的居住环境,更准确的交通状况,以及更方便的生活体验,而要做到这些,离不开大数据的支持。不管是智能交通、智能安防,还是智能家居,大数据都是支持其运转的核心。
而大数据的主体是城市大数据,这涵盖了城市建设、环境、企业产业、教育、医疗卫生、食品、文化等多方面。那么,谁有能力聚集和联接这些数据呢?是公司,公共机构,还是政府?
对此,我认为,这要依靠权威机构、技术和市场的合作。比如,数字图书馆、商业数据中心、证券数据中心、铁路数据中心等。其中,政府应在城市大数据的管理与开放中起主导作用。这主要表现在:促进知识服务业发展,创造新的市场与技术;确保个人信息不受侵犯、公共信息安全与共享;提高城市管理能力与决策水平,更好为市民提供服务。中国工业化与城市化的环境和政府结构很有利于发展城市大数据。如果做得好,中国可以用城市大数据来深化智能城市的发展。
可以预见,未来大数据将遍布智慧城市的方方面面,从政府决策与服务,到人们的生活方式,再到城市的产业布局和规划,以及城市的运营和管理方式,都将在大数据支撑下走向智慧化,大数据将成为智慧城市的引擎。
所以,我说iCity是中国的机遇,因为这恰好与中国的管理结构相吻合。对于中国强大的市政组织力量,iCity是个极妙抓手,在推动城市又好又快的发展中,大有用武之地。我们应当用好智能城市在中国具备天时、地利、人和的独特优势,用城市大数据推进智能城市建设。
新闻背景:
5月19日,“中国云谷 梦想启航”高峰论坛在安溪举行。论坛上,中国工程院院士潘云鹤深入畅谈互联网+下的城市大数据,提出要用城市大数据推进智能城市建设,受到广泛关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23