
把大数据变小_数据分析师考试
我并不喜欢所谓的“大数据”概念,因为数据无所谓大小,任何数据如果不应用到实际的分析之中都是没有价值的。而数据的深度分析,对于从事市场开拓和交易买卖的专业人员,自古就是非常重要的日常工作。之所以现在很多IT人喊出“大数据”的概念,更多的还是因为他们以往只关心数据的关系,而没有进一步去想想数据背后的生活信息。
回想二十年前,对于市场中传统的数据分析师,互联网在全球商用普及更多的是噩梦般的记忆——信息突然“爆炸”了,各种非认证的信息源发布的数据充斥在网上,这和今天微信、微博上的虚假信息泛滥其实是一个道理。所谓的“大数据”背后,是缺乏认证和推敲的信息泛滥,而非数据应用领域的免费大餐。因此,高层近期出台相关政策,规范以微信为主的互联网交互平台“公共信息源”认证,其实是帮了微信一个忙,压缩了泛滥信息的体量。
广义上说,我们今天津津乐道的互联网服务提供商三巨头BAT,其核心价值都是压缩这些泛滥的信息,把大数据变小而易于客户应用。最明显的是阿里巴巴的电商服务,成千上万的网站贩卖的是同质化很强的各类商品,阿里巴巴所提供的是一种便捷的通道和第三方信誉保障,从而能把货物买方所拥有的大量需要分析的信息,压缩到一个有逻辑的选择序列。
腾讯则是成功地压缩了社交网站的泛滥信息。传统的交朋友成本比较高,限制了人类的社交圈;而互联网初期的社交网站虽然成本低,但是未知朋友圈泛滥,一不小心就交友不慎,心情大坏。以QQ、微信为代表的互联网交互平台,在交友低成本和网络化扩张中间找到平衡,成功地取代了信息泛滥化的微博,再次印证信息时代的经济学规律。
正是因为阿里和腾讯找到了可持续发展的信息经营路径,任何互联网在实际生活和商务中的应用,都被用作加强其路径模式的工具。以方兴未艾的互联网金融为例,阿里和腾讯所追求的并非是互联网金融本身的利润规模,而是能否通过互联网金融的应用,强化其在“大数据变斜的路径中的霸主地位。
在这一点上,百度的处境略显尴尬,因为百度的竞争对手太多,且细分领域太多。百度从诞生伊始,就是最典型的“大数据变斜业务模式,其所追求的一直是“用户顺畅迅捷的使用体验、便捷地获取信息和服务”。因此,百度的核心竞争力就在于极尽简单的“框界面”,背后则是对海量信息的知识库结构细化。
随着信息量的增加,百度作为“互联网百科全书”的地位维护成本,逐渐变得“不经济”起来。还是以互联网金融为例,越来越多的金融“互联网百科全书”开始在金融信息领域挑战百度的地位,传统金融服务的互联网化,又让这些金融“大数据变斜提供商得到难得的发展机遇。
例如,生活中投资理财的潜在客户,需要一个网站帮助发掘和查询适合他们的理财产品,把泛滥在网上的金融服务提供商,顺畅便捷地“送到”他们的信息终端(手机或电脑)。于是乎,越来越多的网站开始试图为这类客户构建一个跨银行、基金、证券、信托的“我的投资”的服务,让更多有理财需求的客户成为注册客户,这恰恰是百度梦寐以求想实现的“通过注册而黏住客户”。
再比如,很多高端的专业金融信息服务也需要将“大数据变斜。基金、券商、银行的行业研究员、上市公司研究员等,都需要使用大量的搜索来查阅和分析各种数据;大量投资机构包括私募基金的投资经理,也需要在海量的数据中分析行业、企业。这些用户所需要的,是对金融信息的精准搜索,而他们精准搜索的过程本身,也是极具价值的数据源。
可见,互联网金融的应用端,如第三方支付、众筹股权融资、广义的P2P债券融资交易,恐怕还需要专业的金融机构去经营。但是互联网金融的“大数据变斜服务端,百度是必须要抢的,否则,在未来的竞争中,金融服务领域的BAT格局恐怕会被打破。阿里和腾讯已经在各自领域“挟金融服务以巩固地位”,百度如果还是“走老路”向付费的金融机构倾斜流量,必将失去对金融客户的公信力和吸引力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10