
把大数据变小_数据分析师考试
我并不喜欢所谓的“大数据”概念,因为数据无所谓大小,任何数据如果不应用到实际的分析之中都是没有价值的。而数据的深度分析,对于从事市场开拓和交易买卖的专业人员,自古就是非常重要的日常工作。之所以现在很多IT人喊出“大数据”的概念,更多的还是因为他们以往只关心数据的关系,而没有进一步去想想数据背后的生活信息。
回想二十年前,对于市场中传统的数据分析师,互联网在全球商用普及更多的是噩梦般的记忆——信息突然“爆炸”了,各种非认证的信息源发布的数据充斥在网上,这和今天微信、微博上的虚假信息泛滥其实是一个道理。所谓的“大数据”背后,是缺乏认证和推敲的信息泛滥,而非数据应用领域的免费大餐。因此,高层近期出台相关政策,规范以微信为主的互联网交互平台“公共信息源”认证,其实是帮了微信一个忙,压缩了泛滥信息的体量。
广义上说,我们今天津津乐道的互联网服务提供商三巨头BAT,其核心价值都是压缩这些泛滥的信息,把大数据变小而易于客户应用。最明显的是阿里巴巴的电商服务,成千上万的网站贩卖的是同质化很强的各类商品,阿里巴巴所提供的是一种便捷的通道和第三方信誉保障,从而能把货物买方所拥有的大量需要分析的信息,压缩到一个有逻辑的选择序列。
腾讯则是成功地压缩了社交网站的泛滥信息。传统的交朋友成本比较高,限制了人类的社交圈;而互联网初期的社交网站虽然成本低,但是未知朋友圈泛滥,一不小心就交友不慎,心情大坏。以QQ、微信为代表的互联网交互平台,在交友低成本和网络化扩张中间找到平衡,成功地取代了信息泛滥化的微博,再次印证信息时代的经济学规律。
正是因为阿里和腾讯找到了可持续发展的信息经营路径,任何互联网在实际生活和商务中的应用,都被用作加强其路径模式的工具。以方兴未艾的互联网金融为例,阿里和腾讯所追求的并非是互联网金融本身的利润规模,而是能否通过互联网金融的应用,强化其在“大数据变斜的路径中的霸主地位。
在这一点上,百度的处境略显尴尬,因为百度的竞争对手太多,且细分领域太多。百度从诞生伊始,就是最典型的“大数据变斜业务模式,其所追求的一直是“用户顺畅迅捷的使用体验、便捷地获取信息和服务”。因此,百度的核心竞争力就在于极尽简单的“框界面”,背后则是对海量信息的知识库结构细化。
随着信息量的增加,百度作为“互联网百科全书”的地位维护成本,逐渐变得“不经济”起来。还是以互联网金融为例,越来越多的金融“互联网百科全书”开始在金融信息领域挑战百度的地位,传统金融服务的互联网化,又让这些金融“大数据变斜提供商得到难得的发展机遇。
例如,生活中投资理财的潜在客户,需要一个网站帮助发掘和查询适合他们的理财产品,把泛滥在网上的金融服务提供商,顺畅便捷地“送到”他们的信息终端(手机或电脑)。于是乎,越来越多的网站开始试图为这类客户构建一个跨银行、基金、证券、信托的“我的投资”的服务,让更多有理财需求的客户成为注册客户,这恰恰是百度梦寐以求想实现的“通过注册而黏住客户”。
再比如,很多高端的专业金融信息服务也需要将“大数据变斜。基金、券商、银行的行业研究员、上市公司研究员等,都需要使用大量的搜索来查阅和分析各种数据;大量投资机构包括私募基金的投资经理,也需要在海量的数据中分析行业、企业。这些用户所需要的,是对金融信息的精准搜索,而他们精准搜索的过程本身,也是极具价值的数据源。
可见,互联网金融的应用端,如第三方支付、众筹股权融资、广义的P2P债券融资交易,恐怕还需要专业的金融机构去经营。但是互联网金融的“大数据变斜服务端,百度是必须要抢的,否则,在未来的竞争中,金融服务领域的BAT格局恐怕会被打破。阿里和腾讯已经在各自领域“挟金融服务以巩固地位”,百度如果还是“走老路”向付费的金融机构倾斜流量,必将失去对金融客户的公信力和吸引力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22