京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析报告怎么写_数据分析师
1. 目标(Objective)是前提:
分析' target='_blank'>网站分析报告的起点不是从现象开始的,而是从网站的目标(objective)开始的。
我相信大多数网站的目标不应该超过1个,那些各种目标都应该归结为一个最终的最根本的目标。如果你的老板强调网站既要做到这又要做到那的话,我相信你会很累,网页的易用性也可能大打折扣,而且最终的output很可能事与愿违。
Objective要服从S.M.A.R.T的原则。其中,我会比较强调目标是要能量化的。
因此,我会把报告第三页(第一页是报告标题,第二页是报告的目录)的标题定为:Website Objective,内容只有一个,就是对网站目标的阐述——网站在5月份提升访问量15%。而报告后面的内容,都要服务于这个objective。
2. 网站现象与目标的关系
发现网站出现的种种现象是大家都很擅长的,简单来讲,就是把网站现时(或是历史)表现的数据搜集起来,然后用合适的图、表呈现出来。比如,“周末的流量会减小”就是一个典型流量趋势的现象.
对于那些和目标之间关系不明显的现象,你可以用下面的思维方式来明确它和目标之间的联系:
现象本身是什么——事实的描述,要求越简洁越好:能够用10个字说明这个现象就不要用11个!
假设现象背后的原因是什么——现象形成的驱动因素,要求想的越多越好:如果有3个原因,就不能仅仅只说明2个!现象背后的原因实在是最重要的部分之一,因此,大家最好不要天花乱坠的瞎猜,不妨按照下面的分类进行:
网站本身的原因;
网站访问者的原因;
其他网络营销活动的影响;
其他线下营销活动的影响;
整个互联网环境甚至社会宏观环境(如特定社会事件)的影响;
证实现象背后的真正的原因——去伪存真,分析现象背后的原因需要”大胆假设小心求证“的思维方式。此外,这个部分我们需要我们的逻辑思维之外,更需要我们去直接进行网站的实验测试,例如A/B Test。
建立或否决现象发生原因与目标之间的联系——这是现象与目标之间关系的本质所在。
关于这一点,需要举一个例子仔细说明。比如,我们的目标是提升网站流量(目标),而通过网站分析工具我 们知道了网站bounce rate很大,而new visitors所占的比例在不断提高(现象)。接着我们通过进一步分析和研究了解到,这些现象背后的原因是首页设计不恰当造成用户误认为网站没有信息 量,不是好网站(原因)。这样,我们就可能能够通过这个原因建立现象和目标之间的关系——网友觉得网站质量不佳,不值得再次访问,造成访问量下降。
有时候,我们发现了现象,也找出了现象背后的所有可能原因,但发现这些原因与网站的目标之间并没有任何结合点。这个时候,我们需要果断的否决现象与目标之间的关系,然后转而去发现其他现象,寻找其他与目标相关的原因。
【实例】
我会在我的报告的第四页的标题写上“网站周初流量会增长,而周末会下降”,接着在这页的正文中画出上面的图,然后说明网站流量的趋势是如何在周初出现上涨而在周末下降的。
接着,我会大胆假设出所有跟周初流量增加而周末流量下降相关的原因:
我的文章总是在周末才有空写,所以周一大家能够看到新的文章,而新文章会刺激阅读量;(网站本身的原因)
周日我会安排很多的网络推广,周一会开始投放,这会刺激流量;(其他网络营销活动的影响)
我的读者中有很多是社会活动惊人的朋友,周末不会用于学习,而是更多花时间在社交上;(网站访问者的原因)
我的读者中有很多是“懒虫”,他们周末就爱睡懒觉;(网站访问者的原因)
我的读者中有很多在工作日都很闲,大家都利用上班的时间来学习,周末不需要再学了;(网站访问者的原因)
不仅是我的博客,所有互联网网站都遵循周末流量明显下降的规律,因为中国网民就是这样的特点;(整个互联网环境的影响)
等等等等……
接着,我会认真分析每一个假设是否成立。对于上面的这些假设,有些需要网站分析的数 据支持(比如第1个),有些需要其他部门的同事的支持(比如第2个),有些需要外部报告的支持(比如第6个),还有些则需要我自己亲 自做问卷调查了(比如第3、第4、第5个)。经过一番流汗的探索,我最后发现有两个原因(第1和第3个)是最主要的决定性因素,那么我会下一个结论:网站 在周末流量降低的原因,是因为读者认为周末不是学习的好时机,以及在周末也没有更好的文章可读了。 因此,在报告第五页,标题应该用“读者不认可周末适合学习影响 了周末流量”,然后是对具体结论的阐述,包括多少比例读者周末没有学习习惯以及这部分读者会在周初贡献多少流量等。当然,别忘了在报告的附录中附上这部分 的研究方法和数据来源。在报告的第六页,标题则是”周末没有新文章影响了读者阅读兴趣“,同样也应该较为详细的阐述。
可喜可贺!我们现在能够一眼就建立现象与目标之间的联系,那就是,提升网站流量,需要让读者在周末更爱学习,或者解决读者周末没有更好文章可读的问题。
3. 提出建议
我们找到了现象之后原因与网站目标的关系,那么应该一鼓作气地提出建议。建议也应该符合S.M.A.R.T原则,包括:
S:Specific,建议应该具体;
M:Methodical,建议应该有条理,或者说是有步骤的;
A:Action-oriented,建议应该是行动导向的,建议的条目本身应该就是具体的行动;
R:Realistic:建议应该是现实的,不仅仅是要有合理的资源来支持建议所列的行动,还应该由正确的人来承担;
T:Timebound:建议是有时效的——这个是放之四海而皆准的。
对于我上面的例子,应该有什么样的建议呢?
【实例】
对于第一个结论:“读者不认可周末适合学习影响了周末流量”,我的建议应该是改变读者周末不学习的想法。那么要具体做些什么呢?
对于周末看我博客文章并且留言的读者,奖励他们一些特殊的WA学习资料;
在周末放出一些仅在周末才会刊登的文章,在周末过后则把它们隐藏。
每个周写一篇关于周末有更高学习效率的文章,或者写一篇如何利用时间的文章,强调周末时间对于学习的重要性;
上面的内容将作为报告的第七页,标题为:”3招改变读者周末不学习的想法“。
对于第二个结论:”周末没有新文章影响了读者阅读兴趣“,这个建议就很明确了:在周三或者周四放出一两篇高质量的文章。这会作为第八页内容,标题为:”每周周中应该刊登新的文章“。
4. 执行落实
不得不说的,还有最后的一个重要部分。这部分不属于报告本身,但是却是网站分析报告 价值的体现。有了建议,就应该执行,有了执行才能知道我们的建议是否恰当,才能为以后更好的建议打下一个不断循环上升的基础。如果你的报告的建议没有被很 好的执行或者执行之后效果不明显,那么可能有两个原因:
建议本身有问题,要么是因为并没有找到真正的原因,要么是因为不符合S.M.A.R.T原则;
你没有说服你的老板(Hippo),他们没有支持你。
最后推荐一下数据分析报告应该包含这四个基本内容:
首先,以图表形式表现出数据趋势变化;
紧接着,把重要度量的变化情况写清楚,上升了多少,下降了多少;
然后,针对问题提出改进或弥补的可执行建议;
最后,把建议可能产生的结果和影响做下说明.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05