编者按:史蒂芬•希利昂(Steven Hillion)是Alpine Data Labs联合创始人,负责领导开发面向企业的高级分析平台。在加入Alpine Data Labs之前,他曾在西贝尔(Siebel)、Greenplum等公司管理过数据科学家和工程师团队。
发面向企业的高级分析平台。在加入Alpine Data Labs之前,他曾在西贝尔(Siebel)、Greenplum等公司管理过数据科学家和工程师团队。
数据正变得空前多元,转移空前快速。现在,有效的数据分析需要非常先进的软件和机器。随着大数据分析兴起,传统的直觉判断有何用场呢?要是数据告诉业务经理“往东走”而她的直觉则说“往西走”,怎么办呢?
这番话出自我口中可能感觉有些让人意外——毕竟我本身是一位数据和科学研究者,不过我坚信,要实现真正的价值,必须要让基于数据和商业知识的直觉引导数据分析工作。
有人会说,你只需要将足够多的数学分析和机器性能应用到数据库,就能得到最好的模型。但是,以为光凭数据挖掘就能够产生取得业务进展所需的答案是愚蠢的。在数据科学中,直觉和数据分析相辅相成,相互启发。
首先,直觉引导分析。洞见鲜少能够凭空出现。它们是应用数值方法测试源自直觉和观察的假设和想法的结果。直觉还能够引导研究人员用于测试这些假想的方法。哪些数据相关呢?哪些变量和转变是合理的呢?原因与结果很可能是什么关系呢?哪些模型合适呢?
另外,分析启发直觉。非监督式的建模技术能够识别数据中的关系和模式,而这些关系和模式通过表面的观察或者小数据样本是看不出来的。简单来说,分析能够带来表面观察无法得出的探索途径启示,甚至可能是反直觉的。
如果没有同时让数据团队和业务团队的聪明领导者引导数据分析过程,根据工作经验和专业知识对直觉进行平衡,就会出现问题。
下面就来举几个例子。
有一消费金融团队曾想让我们做一个客户流失模型,帮助银行预测哪些客户最有可能注销账户。从那些数据看不出什么东西来。在存款、贷款和信用卡数据中,我们并没有发现明显的触发客户销户的因素。在创建新账户后,消费者的支出和付费习惯基本上没什么差别。
然而,在银行家对那些数据进行更加仔细的研究,审阅团队制作的客户细分资料后,有一位分析师借助她的直觉突然注意到了一个有价值的新洞见。她认识 到,特定的客户群显现出不寻常的高价值贷款、长期客户价值和数个其它的不寻常因素,他们很可能属于小企业老板。查证那些个人账户后,该团队发现她的猜测的 确没错。
她猜那些开普通账户的企业老板并不知道可能还有比信用卡或者普通贷款账户更好的融资方式。于是,该银行团队的项目目标改为鉴定这些高价值客户,向他 们提供更加合适的产品。该团队后来更进一步,要求获取数据来根据历史用户行为向其它的客户群推荐合适的产品。那些数据促使他们开始向客户提供量身定做的产 品,从而提高客户的终身价值。
单靠数据就得到那种重要的洞见是没什么可能的。这种结合数据分析的商业洞见可以说是无价的。
直觉在数据分析中非常重要,但很奇怪,业务团队往往会被排除在数据分析过程之外。相反,数据研究人员应当一开始就邀请商业分析员参与该过程,相互协作。我已经改变了运作流程,让整个团队参与初期的模型评估,甚至让他们参与更早的原始数据审查流程。
在另外一个案例中,我们的一位大啤酒公司客户想要预测其在日本市场的未来销量。我们建立了一个模型来研究未来一年销量面对不同的市场和定价压力会出 现怎样的反响。该客户告诉我们,他们认为其啤酒销量受经济直接影响。他们觉得,如果日本经济缓慢复苏,人们的软饮料消费就会增加。
他们让我们在我们的模型中以日经指数作为一种趋势变量。该指数一开始提高了模型的准确性——或者说表面上是这样。但在接下来的一年里,该模型开始作出一些离谱的预测。日本经济开始反弹,但现在日经指数已经不在训练数据范围内,原来的那个模型可能“过度合适了”。
经验更加丰富的建模师多半不会引入那种变量。有时候直觉更为靠谱,但在该案例中,数据科学专家建议要谨慎,并认识到建模过程的限制和陷阱。我们对模型实施了改变来抑制股市指数的影响,之后我们的模型在指引制定新宣传计划和预测营销效果上都表现得很好。
数据科学家和业务人员之间往往会出现矛盾——特别是数据似乎与直觉背道而驰,新发展计划的效果似乎微不足道的时候。营销人员会质问“那个数据从何而来?”,数据科学家则做好随时反击的准备,这种情况很常见。
但我认为这种智斗是好事。数学与科学应该能够经受住质问。有的时候,数据能够证明直觉是错误的。也有的时候,那些基于丰富经验的第六感能够找到数据分析过程的缺陷。理想情况下,大家都能从中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03