
大数据时代市场博弈垂青先知者_数据分析师
本月底,2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会将在贵阳国际会议展览中心举行。届时,国际大数据产业巨头、学者、政要将云集于此,共同展示全球大数据产业风采,并围绕大数据进行一场世界水准的思维冲浪,值得期待。
在人们传统印象中,地处我国西南腹地的贵阳,是与“偏远”、“闭塞”、“贫穷”、“落后”等关键词联系在一起的,真想不到,在DT慢慢取代IT地位的历史节点,贵阳发挥后发优势,竟跑在前头,与美国的“硅谷”遥相呼应,DT时代的“中国数谷”落户贵阳,真让人油然而生敬意。
偏居西南一隅,经济不算发达的贵阳,为何突然转型大数据?因为贵阳人意识到,DT时代的一个显著特点是大数据成为市场竞争的利器,得大数据者得天下。
工业4.0扑面而来。这是继以蒸汽机、大规模流水线生产和电气自动化为标志的前三次工业革命之后的第四次工业革命。其特点是通过充分利用嵌入式控制系统,即物理信息融合系统(其中“大数据”扮演主角),实现制造业向智能化转型。
大数据(Big Data)或称海量信息,指的是规模巨大的信息量通过主流软件工具,在合理时间内达到撷取、管理、处理、并整合成帮助企业经营决策、提高核心竞争力的资讯。
移动互联网风生水起,让数据变得丰富多样,质感鲜明,显示出它的移动性、碎片化和私密性。数据能够转化为市场价值,这是大数据服务的核心魅力,大数据里面有商机。在这个信息庞杂、数据处理技术十分先进的时代,只要你有全新的理念,就能从一大堆数据中得出各种各样的商业推理,挖掘到丰沛的商机。时至今日,大数据已成商业竞争的“定海神针”。
制造业同样处于一个数据爆炸的时代,制造业企业需要管理的数据种类浩繁,涉及到大量结构化数据,比如产品数据、运营数据、价值链数据、市场数据、竞争对手数据等。
随着大规模定制和网络协同的发展,制造业企业还需要实时从网上接受众多消费者的“私人定制”,并通过网络协同配置各方数据资源,组织生产。
而大数据又是工业互联网的命脉,大数据可能带来的巨大价值正在被传统产业尤其是制造业认可,它通过技术创新与发展,以及数据的全面感知、收集、分析、共享,呈现出正确认知制造业价值链的全新视角,并催生出新一代智能工厂。
正是厘清了上述这些道理,大数据基调成为贵阳产业转型的主旋律。以前贵阳说要发展工业,很多人反对,此地物流成本高,配套设施跟不上。但是发展大数据产业就没有这些限制,一根网线、一台电脑,再加一个办公桌,就能够连通四海。
面对云蒸霞蔚的移动互联网和大数据景观,让贵阳插上“互联网+”的翅膀,以大数据为突破口,转型高新技术产业,因为以前的产业比如烟草、能源等,能耗都非常高,且GDP产值低,2013年贵阳全市GDP为2085亿元,不足西部重镇成都的1/4。在经济转型路上,贵阳明显走在前面。今年初,贵阳市出台《关于加快推进大数据产业发展的若干意见》,提出力争到2017年,贵阳市大数据产业的总量规模突破2000亿元。
作为大数据产业的领跑者,贵阳有太多的亮点,中国首个大数据战略重点实验室落地贵阳,贵阳是首个全域公共免费WI-FI城市,建立了首个块上集聚的大数据公共平台,中国首个政府数据开放示范城市,建立起中国首个大数据交易所,全国第一个国家级大数据产业集聚地,“贵漂”新时代的天堂,全国呼叫中心产业西移贵阳。每一个亮点都凝聚着贵阳人前卫的观念、超凡的胆识和聪颖的智慧。
实际上,贵阳在大数据方面布局已久。2013年9月,中关村贵阳科技园启动;同年12月,中国电信、中国联通、中国移动三大运营商陆续落户贵安新区;2014年一季度,贵阳在环渤海、珠三角地区四处招商,据当地媒体报道,截至当年4月9日,就已签约85个大数据项目,投资额度近1000亿元,11个项目已进入实质性开工建设阶段。目前,全市互联网出省带宽从2013年的450G增加到目前的1500G。贵阳数家大数据中心的服务器规模已经超过2万台。
从全国大数据市场角度而言,大数据产业可圈可点。作为国际大都市,上海是海量数据的信息枢纽,大数据对于上海要重点发展的先进制造业和现代服务业以及传统服务业与信息化的深度融合的先行先试,率先迈向智慧城市这一目标,与国内其他城市相比有着迥然不同的重大意义,上海正与跨国巨头深度合作,在金融大数据上有所建树。西安5年内将建成西部最大数据中心,要将充满人文气息的古城西安打造成现代DT气势的大数据基地。南京总占地面积1.16平方公里的鼓楼江东软件园落成并投入使用,南京大学国家科技基地等高端DT企业入驻其中。深圳也在吹响大数据“集结号”,深圳大数据产学研联盟的16个发起单位囊括了深圳多个领域的“尖端部队”。
市场从来都是垂青先知者,贵阳已站在大数据时代的市场博弈的潮头。从这个意义上说,举办2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会应当是贵阳捷足先登、在大数据产业运筹方面的又一大手笔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23