
从3V到6V 大数据概念演变_数据分析师
大数据时代来临,大如Google、IBM等科技巨头拥有庞大资源,可对深奥的技术与跨领域知识进行发展,但是一般企业多难以因应。
至今发展已经超过十几年,并且成为行动云端趋势之后,最受瞩目的新兴科技名词。要探讨大数据为何受到如此广泛瞩目,必须从各方面进行探讨,包括:大数据的发展历程与特性、大数据的商机有多大、大数据将对世界带来什么样的改变,以及大数据的相关技术等。
从3V到6V 大数据定义演变
顾名思义,大数据明显意指「巨大的数据量」,数据是形容数据,当数据规模大到某种程度,就变成大数据;又或者从另一种角度思考,因为数据非常巨大,因此使其具有一些特性,而这些特性促使传统资讯处理技术无法进行归纳分析,因此需要新的技术,所以大数据也可以说不单指规模大的数据,而是一种分析处理庞大数据的技术。
那么,大数据中所谓的数据特性,指的又是什么呢?这得从2001年大数据被麦塔集团(META Group)分析师莱尼(Doug Laney)提出之后开始谈起。2001年莱尼在一份报告中对大数据提出「3-D数据管理」的看法,即数据成长将朝3个方向发展,分别为数据即时处理的速度(Velocity)、数据格式的多样化(Variety)与数据量的规模(Volume),3者统称为「3V」或「3Vs」。
之后,随着资讯科技不断地往前推进,数据量的复杂程度愈来愈高,「3Vs」已经不足以形容新时代的大数据,因此在2012年时,不仅莱尼调整既有的3V分析,包括科技大厂IBM、国际调查机构Gartner、IDC等纷纷对大数据提出新的论述,大家纷纷地将3V增加成为4V,即在原本的速度、多样化与规模特性上,再增加「准确性」(Veracity)的特色,之后甚至还有人提出5V、6V的看法,即在原本的4V上又增加「可视性」(Visualization)与「合法性」(Validity)等。
大数据商机惊人 大数据商机到底有多庞大?
事实上,从2001年大数据概念被提出一直到2011年,10年时间大数据都一直默默无闻,一直到2012年市场对大数据进行包装并大肆探讨,大数据浪潮急剧涌现,各大调查机构都对大数据即将引爆的商机给予非常正面的看法。
IDC的报告就提到,2012至2016年全球大数据技术与服务的市场规模年复合成长率将高达31.7%,至2016年总收益将会达到238亿美元,到了2018年大数据市场商机更将达到500亿美元之多,Gartner也提到随着各个领域企业纷纷导入大数据应用,将促成巨大商机的涌现。
谘询机构麦肯锡全球研究院在2011年提出的「大数据:创新、竞争与生产力的下一个新领域(大数据: the Next Frontier for Innovation, Competition, and Productivity)」报告中指出, 未来10年美国保健产业与大数据有关的商机高达3,000亿美元;并且将为美国带来1,000亿美元的行动商机服务;以及在消费端市场创造6,000亿美元商机;在企业应用上,大数据可协助制造业缩短20~50%的上市研发时程,为金融业行销活动提高60%的回应率,以及降低10%的规画与执行时程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23