
应用案例:联合国与Frog用大数据拯救尼泊尔
当年菲律宾被台风海燕横扫,短短几小时内造成愈10,000名的人员伤亡。美国红十字会地理空间高级工程师Dale Kunce曾要求获得数据为应急人员绘制出抢救地图路线,菲律宾政府匆匆忙忙扫描了40多页模糊不清的Excel表格给他,“甚至都不是由机器扫描的,纸张排列杂乱,数据有效性也几乎没有。”结果不得以找来几十个志愿者当场重新输入信息。
这种后院着火的事情一度屡见不鲜,直到去年联合国人道主义协调事务办公室与全球Frog设计公司共同搭建了HDX网站——旨在呼吁人道主义数据交换。这个网站界面清爽,数据分类整洁,可以帮助松散的人道主义组织联合在一起工作。这个网站在非洲埃博拉病毒疫情爆发事件中提供了诊所基本信息,死亡报告及疫情跟踪功能,目前则主要提供尼泊尔数据。
“就好像糖果粉碎传奇里的灾难信息共享一样,”Kunce说道,暗指前端信息的重要性,然后由大型的人道主义救援组织进行整合,从而为泊尔提供更快的救援行动。
HDX平台
HDX看起来貌不惊人。尼泊尔地震登陆页面是一个表格,显示当地的地震活动。拉下来就是已确认粗略的伤亡人数,然后就是一系列简单的文档, 比如人口,天气数据,河流分布和路况等。
不过,点击下鼠标,这些数据就可以被标准化下载——都是可编辑的文本形式取代僵硬的PDF。再点击下鼠标,被批准的组织可以上传数据以供分享。这种前所未有的能提供快速有效信息分享的平台就是HDX的目的,设计时也听取众多NGO的反馈意见。
如何使用
在HDX问世前,人道主义常常需要花费大量时间进行文件处理。支持小组的负责人Justine Mackinnon解释道:“我们为六个国际型组织提供信息,每个组织的文件格式都不一样,这简直是个噩梦。不过现在有了HDX, 所有文件都同格式输入,也方便大家分享。”
支持小组是由来自80个国家的2,000名应急人员组成,他们分析了数百万的尼泊尔数据后搭建了几个大型数据库,数据范围从紧急需求呼叫到汇报哪些应急人员已经到达尼泊尔,还有地震类型汇报。到这篇文章问世,HDX上关于尼泊尔的数据库将达到10个。
“这在尼泊尔真的是非常及时,”HDX的项目经理Sarah Telford说“这些数据改变了危机,目前最重要的就是地理空间数据,它可以指导哪里是道路,哪里是城镇,医院在哪里。如此我们才可以知道哪里被堵上了,哪里可以让直升飞机降落。”
救援组织Mapaction地震不久后就在HDX上下载了五份重要的文件,内容关于当地的河流和山脉。这些信息可用在PPT上要求协调政府,非政府组织及联合国的行动,同时也打印出来让志愿者在没有电力供应的情况下使用。
在红十字会,Kunce马上下载了尼泊尔的贫困人口数据进行分析,贫困人口地区往往更容易遭受自然灾害,而这些数据让红十字会更好的进行资源配置。
共通语言
那么什么是HDX的“共通语言”?仅仅是些非PDF的文件么?
答案当然不是这些。HDX有清晰简洁的前端,一种纯粹的功利主义及普遍的审美的结合——这被Telford称为该领域的“时代精神”。因为HDX, 各大国际性组织的交流和分享更为紧密。
“像我们这种很书生气的人真的很喜欢这种闪闪发光的东西,” Kunce说。“HDX就是闪闪发光的,我们都很喜欢。”最重要的是,HDX搭建数据平台的意义好像罗赛塔石碑一样——这是联合国为识别地方设施设计的代码,简称为P。不过P不像GPS那样精准定位,相反各种组织可能为同一个地方有不同的P代码,逻辑也各不相同,而且每次都不一样。也就是说,2015年的代码到了2017年就可能完全不适用。
为什么一直没有一个统一的代码标准呢?实际是有的,1999年以来,联合国已经制定发布了代码标识标准,并提供在线下载。但是Kunce说没有人用这些,他不得不四处挖掘数据供红十字会使用。但这些年随着HDX的普及,代码制定规则也随着普及标准化。为什么?他相信是HDX让大家知道了信息共享的重要性以及和联合国代码合作的迫切。
“其实这并不是技术问题,而是政治问题,”Kunce说。“从我的角度来看,我旁观看着HDX不断成长,为数据分析提供了平台,促进标准统一,也帮助不同政治背景的人解决问题,这是多好的技术平台啊。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01