京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的银行业_数据分析师
金融危机之后,世界各国的银行和金融机构逐渐意识到实现成功没有捷径。相对于全方位大规模的变革,从“帐户中心”到”客户中心”的框架改革是一个更好的实现路径。而这条路径只能通过我们通常所称的大数据分析来实现。
通常意义上的大数据是结构化数据和非结构化数据的组合。除了银行可获得的客户的结构化数据(例如账号、账户类型资产负债等),还有大量的非结构化数据。后者主要来源于电子邮件、呼叫中心、社交媒体、网站、客户反馈和各种机构等。这种结构化和非结构化数据的结合聚集了巨量数据,对重大事项的决策起到了不可忽视的作用。
在当今竞争激烈的世界中,金融机构已经意识到,必须通过分析掌握各个细分市场客户的行为特点,才能够将合适的产品在合适的时间卖给合适的客户。在此之前,银行一直对巨量的非结构化数据视而不见,然而如今,银行已开始借助持续增加的各类数据进行大规模的投资活动。
根据凯捷咨询公司(Capgemini)最近发布的一项研究显示,超过70%的银行高管赞同以客户为中心这一理念的重要性,但只有37%的客户认为银行了解他们的需求和偏好并能给与及时的应对。
银行更加注重分析非结构化数据,并通过将其与结构化数据映射,全面了解客户特点,从而建立起一个实时的推荐系统以预测其下一步行动。在数字消费时代,金融机构正在深入探索极为丰富的大数据。这可以用在很多方面,例如银行提出的个性化报价。在银行业数字化的时代,个性化可以最大限度地发挥其盈利能力。
由商业银行开发并使用的实时推荐系统呈现出不断增长的趋势。例如,你可能会收到用信用卡购买电影票将享受折扣的促销短信;收到提醒咖啡时间快到了的手机短信,而你可以使用信用卡累积积分购买咖啡;当你出国旅行时,如果收到一条来自你银行的短信,通知你最近的自动取款机地点,这是否会给你带来惊喜?这就是大数据分析的力量。要充分利用和了解客户下一个可能的动作,将推荐在正确的时间发送给正确的人是非常重要的。
然而,完善这些实时的推荐并不容易,这需要组合使用多种先进的统计方法和机器学习算法。基于Hadoop的分布式计算逐渐成为银行业进行大数据分析的主流方式,这将帮助银行有效地留住现有客户并增加收入。
目前所需的就是整合各个系统的信息,如来自客户关系管理、产品组合、贷款、借记卡、信用卡等的数据,并建立一个针对客户全方位360度的分析视角。客户分析是银行最具功效的工具。麦肯锡研究表明,具备较高的客户分析能力的银行相较其他对手来说,在市场份额上将领先四到六个百分点。
另一项正在进行的研究是探讨大数据分析在辅助央行政策制定上所发挥的作用。印度储备银行一直拥护这样的信念—即所有货币政策制定都应是数据导向(此数据为结构化数据)的。也许有一天,这样的决策也可以通过非结构化数据驱动(从非结构化数据源收集的通胀预期)。有趣的是,很多发展经济学正式是基于随机实验,与此类似,也可以基于日常数据得出通货膨胀预期。
综上所述,在现如今的大数据时代,银行业的发展前景就在于如何明智的利用大数据分析能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23