
怎样用大数据来做生意_数据分析师
数据本身不产生价值,如何分析和利用大数据对实际业务产生帮助才是关键;从事大数据的生意要重视投入与产出;许多人已经默默地通过大数据获利。
1、分析微博数据炒股
“过去往往是把数据静止到程序当中分析,但现在不可能等它停下来。”中国工程院院士邬贺铨表示,数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。华尔街德温特资本市场公司分析全球3.4亿微博帐户留言,判断民众情绪,高兴买股票,焦虑抛售股票,判断全世界高兴的多还是焦虑多,从而判断股票抛售情况。该公司当年第一季度获得7%的收益率。
2、筛选健康企业放贷
众所周知,国内中小企业贷款很难,因为他们没有担保,而阿里公司根据淘宝网中小企业的经营状况,筛选出财务健康和诚信比较健康的企业,提供不需要担保的放贷。据相关数据,阿里公司目前放贷300多亿元,坏账率只有0.3%,工行坏账率1.5%以下,阿里公司的坏账率只有四大国有银行的1/3。
3、卖衣服
Zara收集海量的顾客意见,以此做出生产销售决策,这样的作法大大降低了存货率。同时,根据这些电话和电脑数据,Zara分析出相似的“区域流行”,在颜色、版型的生产中,做出最靠近客户需求的市场区隔。
4、卖书的同时还卖所有的东西
今年初,乔治·派克(George Packer)在《纽约客》发表的一篇名为“亚马逊害了书?”的万余字文章,受到了书业及爱书人的极大关注。他在文章一开始,便尖锐地提问:“亚马逊对消费者有好处,但是对书有好处吗?”相信这个问题,也长久地缠绕在中国书业人士以及爱书人心头。乔治·派克与读者分享了自己调查的结果:亚马逊的创始人贝佐斯,并不是因爱书而开书店,在亚马逊上卖书的一个重要的意图是,收集高收入、高学历用户的资料,在掌握了数百万消费者数据之后,亚马逊就可以想办法把所有东西以低价卖给他们。
5、大数据在医疗行业大有可为
如果说哪个行业从分析大量不同来源的数据中受益,那一定是医疗。在电子病历系统、图片系统、电子处方软件、医疗索赔、公共卫生报告、新兴的健康应用、移动医疗设备及医疗产业中,充满了等待被使用的数据。
对于一个急于寻找方法来降低成本、提高效率并提供更好治疗的行业来说,分析这些数据是意义深远的。成效一定会有,但从不同的、专有的系统中获得数据,却是一个繁琐的过程,对于一个公司来说,相当于不可能。
6、通过大数据卖车已经成为可能
当大多数消费者买车的这些天,他们开始在网上自己搜索。这对经销商和汽车制造商来说是好消息,谁可以通过分析现有的汽车数据营销山上走的趋势中获益。“汽车购物一般包括品牌,型号,内饰水平,当然,价格之间的比较需要大量的研究,”阿维Steinlauf,在汽车研究网站埃德蒙兹的CEO说。“该汽车制造商和经销商知道,如果他们表现良好,在这些比较中,他们会得到到购物清单并赢得市场份额。”这意味着分析数据-无论是来自互联网还是自己的展厅,都是消费者所期待的。
“购车者在垂直汽车网站上浏览过什么车型,现在驾驶什么车型,二手车置换评估能值多少钱,再到售后环节的所购车辆什么时候需要保养,什么时候出了事故需要维修,我们都能知道,而且是从移动端设备中第一时间知道。”9月4日,广汇广西机电的常务运营副总经理罗云宁,给记者描绘了这样一幅汽车经销商在大数据营销时代的蓝图。
7、大数据的迅速增长及相关技术的发展正在给体育用品业带来全新的商业机遇。
畅想未来,有健身习惯的人拿着这些数据上保险有可能会获得更低的费率。但前提是建立在一套完善的健康管理“硬件+软件”生态系统生成之时,否则,它只能是愿景,不可能是点石成金的一门生意。
8、大数据卖手机,小米的经典生意经
小米品牌凭着大数据时代的精准分析对不同用户的理解和把握,不断修正产品,推陈出新,不断营销着自己的品牌及价值,从图8最开始的一小撮,逐渐漫步到神州大地,形成了自己独有的高集中度区域。
9、互联网公司如何利用大数据做生意
说到底,大数据的利用难点在于技术。从数据的收集到存储,再到整理,直到最后的挖掘利用,均是技术活儿。百度含着数据出生,具备天生的大数据挖掘能力。随着支付闭环的打造,数据也可以在各种各样的场景找到落脚点。而阿里和腾讯作为业务驱动和产品驱动的公司,要下大力气将底层的大数据打通,进一步挖掘数据,让数据更好地为公司服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07