京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统征信PK大数据征信 谁能拯救P2P
伴随着P2P的火热发展,市场对征信的需求,从未如此迫切。
近日,由中国投资协会与上海 Oppland 联合举办的“中国 P2P 网贷征信发展高峰论坛”在深圳召开,这也是国内首次专门针对P2P网贷的征信会议。芝麻信用、鹏元征信、腾讯征信、上海资信、安融征信等国内知名征信机构的高管以及FICO中国区总裁陈建等代表齐聚一堂,分别就中国征信的现状与发展进行了探讨,保护个人隐私、完善惩戒机制及法律法规、加强行业自律等,成为热议的话题。
中国P2P平台面临的征信现状
腾讯征信总经理吴丹指出,当前中国征信体系现状是,央行的征信系统虽然覆盖了8亿人,但真正和银行有信贷关系的只有3亿人。也就是说,在中国13亿人口里,有银行信贷记录的人,占比不足25%。这将导致很多人的融资需求很难得到满足。
安融征信总经理常胜进一步表示,P2P机构面临的征信现状是四大问题:P2P平台目前没有纳入央行征信系统中,难以直接获得央行征信服务;央行征信报告无法全面、有效地反映借款人在非银行机构间的借款信用信息;国家公共部门信息公开程度远未到位,多数信用信息获取难度大;P2P机构间信息相互独立,非银行机构间的借款人征信、惩戒机制未有效建立。
“P2P机构无法有效掌握借款人在各类民间机构的信贷信息,难于识别借款人在民间机构存在的多头借贷、恶意骗贷情况。”他指出,民间信贷信息的缺失,导致小额信贷业务面临重大风险。
传统征信VS大数据征信,谁能拯救P2P?
从类型看,目前市场上的征信机构主要包括:以上海资信、安融征信为代表的一类机构,采用的是同业信息分享模式,即客户查询一条信息需要先共享一条相应的信息;其次,以腾讯、阿里为代表的一类互联网公司;再次,是以平安、宜信、拍拍贷为代表的一类金融机构。
P2P平台征信采取的模式主要包括传统官方征信模式(如平台通过具有央行背景的上海资信间接查询借款人信用信息记录)、大数据征信模式。
值得一提的是,前一种模式面临的难题是征信数据不全、平台上传数据积极性低、更新不及时、接入门槛高等问题。而后一种模式,其优点在于数据来源广泛,弥补传统征信覆盖面不足的缺陷;数据类型多样化,不局限于信贷数据,更能全面反映个人信用情况。其难点在于:信息过多引起的数据杂乱,整合多方数据困难,且数据相关性分析需要较长时间和实践来检验,短期内信用评价数据精准性较低。
此外,盈灿咨询高级研究员张叶霞指出,大数据征信也面临着法律风险,在个人隐私保护上较难把控。“征信机构在未告知可能的不利后果及取得书面同意情况下,不得采集个人的收入、存款、有价证券、商业保险、不动产的信息和纳税数额信息等。”
“发展征信,最重要的是惩戒机制”
前海征信数据分析中心副总经理潘叡表示,征信所必须的风险违约数据是金融行业特有的数据,缺失风险违约数据的征信数据将是无本之木,引入金融大数据至关重要。“而信用评分体系,需要长期、大量、全面的风险违约数据和行为特征数据的共同积累。” 她认为,目前的征信市场规模小,扩大市场规模应该鼓励更多拥有海量客户数据的企业参与,发展征信业务。
潘叡同时强调,征信市场的有序发展,需要切实保障客户个人的信息安全。“在保护个人隐私不受侵害的同时,加强对个人的信用管理和征信知识教育,使消费者更多地了解如何管理好自己的信用,为自己的信用行为承担更多责任。”
中国人民银行参事、中国人民银行研究局原副局长李德在出席上述会议时也表示,互联网金融的发展,促使征信业和金融业的发展进入了一个新的阶段。但当前,我国信用体系建设还面临着很多问题,有待提高和改善。从目前来看,为争取经济利益而失信的情况,时有发生。我国征信市场的发展时间不长,与欧美存在较大差距。在产品的开发等征信技术方面,也有很大距离,且征信从业人员的素质有待于进一步提高。
“征信机构希望多采集和提供各种信息,但是也容易侵害信息主体的隐私。行业发展和监管始终是一对复杂的矛盾。”他指出,征信系统的发展完善,离不开法治建设,要进一步制订各种管理办法,同时,建立信用体系标准体系,扩大以后信用信息范围。
芝麻信用总经理胡滔也表示,在这一新的大数据征信市场,怎样一方面提高交易信息的透明度,另一方面又能有效地保护个人隐私,不造成客户个人信息暴露方面的恐慌,这需要国家法律法规的完善,同时,还要加强行业自律。
她指出,信用,不是一蹴而就。发展征信,最重要的是惩戒机制,“有一个完善的惩戒、奖励机制,很多人都会去向好的方面去做”。
此外,胡滔指出,中国征信市场,刚刚开放,更多应该是合作的模式。在大数据征信方面,如何更低成本、高效率地收集有价值的信息,都需要共同探索和摸索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22