京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统新药研发或被大数据和可穿戴颠覆_数据分析师
塔夫茨(Tufts)药物开发研究中心数据显示,一款新药从研发到FDA(美国食品药品管理局)批准,平均成本高达25亿美元。这其中,较高的药物失败率在很大程度上推动了研发增本的增加。
但如今,一个新的机会出现了:如果生命科学公司能够在开发早期获得足够多的数据,就可以创建一个更为有效的药物开发流程,针对最有效的疗法优先分配资源。大数据分析和新的临床技术(如移动健康解决方案和可穿戴设备)能够在很大程度上改变临床实验的执行方式,提升数据价值,并从临床试验中得到更多结果。
计算能力的提升和预测性分析工具的出现让我们能在几秒钟的时间内处理海量数据,并获得分析结果。这其中,技术的作用就是把分散的数据资源整合到一起,允许行业共享和分析,帮助做出更明智的决定。这会让我们以更快的速度开发出更有效的药物。
例如,硅谷基因数据公司23andMe近期任命基因工程技术公司Genentech高级研究人员理查德·舍勒(RichardScheller)为首席科学官(CSO)兼治疗学主管,负责挖掘23andMe近90万人的基因数据库信息,希望从中找出治疗常见病和罕见病的新线索。
还有一些企业联合起来研究如何为患者更好地部署可穿戴设备,将来自这些设备的数据与传统的临床数据相结合,来衡量患者的行为变化,并利用这些信息做出更明智的决定。上个月,生命科学临床研究领域云解决方案供应商Medidata宣布与Garmin达成战略合作,通过Garmin的健康手环与MedidataClinicalCloud相结合来提升临床试验中的患者参与度、数据质量和操作效率。此外,VitalConnect等公司还获得了FDA的批准,利用其生物传感器来监测患者的各项生物指标。
之前,患者的健康状况只能在临床中进行评估。但这些生命科学公司正把我们推向一个新的时代,连接到之前根本无无法获取的一系列新行为数据。前文所述案例均能让我们在临床试验中提升患者互动,最终让我们获得更多、更实用的数据,这些对于药物研发取得突破至关重要。
当你询问患者感觉如何时,你得到的是主观性答案。主观数据在科学研究中也是重要的,但远不及客观数据。而生命科学公司目前可以通过移动设备和各种活动追踪设备来收集一系列新型客观数据,让我们对患者生理指标进行实时评估,了解一款药物究竟在多大程度上影响患者的生活质量。对于制药公司、监管机构和保险公司而言,这是一个越来越重要的衡量指标。
以6分钟走路测试为例。多年来,该测试一直被用于衡量心血管、呼吸和中枢神经系统疾病患者的病情严重程度。测试方案不存在数学或科学方面的错误,但是通过新的技术,我们可以对患者病情进行更全面的评估。不仅仅是向医生展示其6分钟的走路能力,患者如今可以戴上可穿戴设备,对活动情况进行持续追踪,无需走进医生办公室就可以向医生提供全面的活动数据。这样,患者的日常生活不会被打乱,而医生和研究人员又获得了更丰富的数据。
苹果公司近期发布了ResearchKit平台,利用iOS应用推动医学研究。这同时也表明,所有行业都对直接来自患者的数据的价值感兴趣。
移动设备和大数据分析还能显著减轻患者的负担。可穿戴设备能够降低患者拜访诊所的次数,提供更全面、更高质量的患者生理数据来评估药效,让一些没有必要的患者检查实现最小化。
葛兰素史克(GSK)上个月曾表示,计划在临床试验中引入生物传感器来提高数据质量。这些生物传感器不但能提供更多的数据,而且通过远程监控也会降低对患者日常生活的干扰。因此,科技将在很大程度上提升临床试验中的患者体验。
最终,如果生命科学公司不仅能展示出其药物在治疗特定疾病时的有效性,同时还能极大提高患者的生活质量,就能够帮助监管部门做出更好的决定,让药物尽早推向市场。
当然,要看到这种变化还需要市场主要参与者的共同努力。当监管机构认可这种新的临床开发方式时,制药公司就愿意在其临床研究中使用新的技术和大数据分析。反之亦然,如果制药公司能够出台基于强大科学依据的标准化临床开发方式时,监管机构也愿意接受这种新方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23