京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统新药研发或被大数据和可穿戴颠覆_数据分析师
塔夫茨(Tufts)药物开发研究中心数据显示,一款新药从研发到FDA(美国食品药品管理局)批准,平均成本高达25亿美元。这其中,较高的药物失败率在很大程度上推动了研发增本的增加。
但如今,一个新的机会出现了:如果生命科学公司能够在开发早期获得足够多的数据,就可以创建一个更为有效的药物开发流程,针对最有效的疗法优先分配资源。大数据分析和新的临床技术(如移动健康解决方案和可穿戴设备)能够在很大程度上改变临床实验的执行方式,提升数据价值,并从临床试验中得到更多结果。
计算能力的提升和预测性分析工具的出现让我们能在几秒钟的时间内处理海量数据,并获得分析结果。这其中,技术的作用就是把分散的数据资源整合到一起,允许行业共享和分析,帮助做出更明智的决定。这会让我们以更快的速度开发出更有效的药物。
例如,硅谷基因数据公司23andMe近期任命基因工程技术公司Genentech高级研究人员理查德·舍勒(RichardScheller)为首席科学官(CSO)兼治疗学主管,负责挖掘23andMe近90万人的基因数据库信息,希望从中找出治疗常见病和罕见病的新线索。
还有一些企业联合起来研究如何为患者更好地部署可穿戴设备,将来自这些设备的数据与传统的临床数据相结合,来衡量患者的行为变化,并利用这些信息做出更明智的决定。上个月,生命科学临床研究领域云解决方案供应商Medidata宣布与Garmin达成战略合作,通过Garmin的健康手环与MedidataClinicalCloud相结合来提升临床试验中的患者参与度、数据质量和操作效率。此外,VitalConnect等公司还获得了FDA的批准,利用其生物传感器来监测患者的各项生物指标。
之前,患者的健康状况只能在临床中进行评估。但这些生命科学公司正把我们推向一个新的时代,连接到之前根本无无法获取的一系列新行为数据。前文所述案例均能让我们在临床试验中提升患者互动,最终让我们获得更多、更实用的数据,这些对于药物研发取得突破至关重要。
当你询问患者感觉如何时,你得到的是主观性答案。主观数据在科学研究中也是重要的,但远不及客观数据。而生命科学公司目前可以通过移动设备和各种活动追踪设备来收集一系列新型客观数据,让我们对患者生理指标进行实时评估,了解一款药物究竟在多大程度上影响患者的生活质量。对于制药公司、监管机构和保险公司而言,这是一个越来越重要的衡量指标。
以6分钟走路测试为例。多年来,该测试一直被用于衡量心血管、呼吸和中枢神经系统疾病患者的病情严重程度。测试方案不存在数学或科学方面的错误,但是通过新的技术,我们可以对患者病情进行更全面的评估。不仅仅是向医生展示其6分钟的走路能力,患者如今可以戴上可穿戴设备,对活动情况进行持续追踪,无需走进医生办公室就可以向医生提供全面的活动数据。这样,患者的日常生活不会被打乱,而医生和研究人员又获得了更丰富的数据。
苹果公司近期发布了ResearchKit平台,利用iOS应用推动医学研究。这同时也表明,所有行业都对直接来自患者的数据的价值感兴趣。
移动设备和大数据分析还能显著减轻患者的负担。可穿戴设备能够降低患者拜访诊所的次数,提供更全面、更高质量的患者生理数据来评估药效,让一些没有必要的患者检查实现最小化。
葛兰素史克(GSK)上个月曾表示,计划在临床试验中引入生物传感器来提高数据质量。这些生物传感器不但能提供更多的数据,而且通过远程监控也会降低对患者日常生活的干扰。因此,科技将在很大程度上提升临床试验中的患者体验。
最终,如果生命科学公司不仅能展示出其药物在治疗特定疾病时的有效性,同时还能极大提高患者的生活质量,就能够帮助监管部门做出更好的决定,让药物尽早推向市场。
当然,要看到这种变化还需要市场主要参与者的共同努力。当监管机构认可这种新的临床开发方式时,制药公司就愿意在其临床研究中使用新的技术和大数据分析。反之亦然,如果制药公司能够出台基于强大科学依据的标准化临床开发方式时,监管机构也愿意接受这种新方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22