
“大数据”促进高校学生管理工作思路转变
2012年4月10日,美国联邦教育部技术办公室发布《通过教育数据挖掘和学习分析改进教与学:问题简介》,指出:在教育中有两个特定的领域会用到大数据:教育数据挖掘和学习分析。在我国,教育界也对“大数据”的关注越来越多,尤其是对教育数据挖掘和学习分析这两个特定的领域。因此,大数据时代下学生工作的创新与发展已经呼之欲出。
在大数据时代,不是部分育人,而是全员育人
在大数据时代到来以前,随机抽样一直是我们最常使用的调查研究方式之一,然而,众所周知,随机抽样是在总体数据不可采集和分析的情况下才应运而生的,随着大数据时代的到来,这些都将成为可能,随机抽样的缺陷也将展露无疑。作为一名高校学生管理工作者,我们在实践中发现,用采样的数据分析方法违背了“为了一切学生”的工作理念。虽然随机采样大多数时候正确率非常高(可达97%),对于学校的整体情况来说,3%的错误率是可以接受的,但是对于每个学生来说,他们的具体信息和细节你无法掌握,甚至因为这3%的错误率还可能失去了对某类学生或者某个问题的研究能力,这对于学生管理工作来说将是一个巨大的隐患。因此,采用随机抽样的方法已经不能适应学生工作管理者“全员育人”的目标和要求,取而代之的是,以“样本=总体”的思维,面向高校所有学生,通过大容量的数据存储设备和先进的数据分析手段,收集并掌握每个学生全面和完整的数据,从而实现高校学生工作管理从“部分育人”到“全员育人”的转变。
在大数据时代,不是追求精确,而是追求效率
在小数据时代,因为收集到的数据有限,一旦出现一个细小的错误就会被放大,甚至影响整个数据的分析结果,所以我们要求收集数据的每一个环节尽量保证零失误率,同时确保记录下来的数据尽量精确。但是,如果我们掌握的数据多到接近总体,数据的精确性反而变得不那么重要了,因为大数据对错误的包容性可以帮助我们做更多新的事情,创造更好的结果,例如,观察到更多变化和细节。“大数据”建立之后,虽然每个学院操作起来可能会更加混乱,但众多的数据加起来不仅能抵消掉错误数据的影响,而且能够实时更新每个学院不断变化的各种信息,帮助我们掌握事情的发展趋势,从而得出一个更加准确的结果,同时提供更多的额外价值。因此,从这一角度来看,大数据的混杂性反而提高了我们工作的效率。在分析问题时,我们不再需要担心某个分析点对整个调查结果的不利影响;在寻找解决方法时,我们也不再需要以高昂的代价消除所有的不确定性去寻找唯一的答案。这不仅使我们能够更加辩证、客观地看待每一个学生,也使我们在接受这些纷繁数据的不精确和不完美的同时,接受了每个学生的个性化和复杂化。
在大数据时代,不是注重因果关系,而是注重相关关系
在小数据世界中,因果关系是核心竞争力,但是在大数据时代,相关关系将发挥更大的价值。通过识别有用的关联物,相关关系虽然不能帮助我们揭示这个人或这个状态背后的原因以及发生这个现象的内部运作机制,但是可以帮助我们了解一个人的状态或现象,还可以通过寻找关联物预测未来。一个学生如果出现问题,不会是瞬间的,而是慢慢地出问题的。通过收集所有的数据,我们可以预先捕捉到学生要出现问题的信号,例如学学习成绩的下降、参与数据分析软件活动的次数减少等等,这些都说明他可能要出问题了。作为高校学生工作管理者,就可以利用“大数据”把这些异常情况和正常情况进行对比,然后知道什么地方出了什么问题。通过尽早地发现异常,管理者就可以在问题出现之前采取措施进行疏导和调解。因此,在大数据时代,相关关系将大放异彩,不仅仅是因为它能为我们提供因果关系所不能提供的视角,而且是因为这些视角都很清晰,有很高的分析价值,从而有助于我们拓宽研究思路并积极应用于实践。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18