京公网安备 11010802034615号
经营许可证编号:京B2-20210330
教育大数据,想说爱你不容易_数据分析师
近两年,“大数据”在教育领域日益成为热点名词,和“在线教育”相呼应。从今年新东方、学大等教育机构发布的教育产品来看,几乎每一款产品都会提到大数据。既然如此受到重视,那么在当下教育领域,“大数据”有何特点?又有何作为?
专家指出,目前国内教育领域的“大数据”仍处于概念阶段,大家都在起步和探索过程中,尚无比较成功的大数据应用案例,不少大数据应用也都处于较浅的层次。不过,随着教育大数据的不断积累和深入发展,“大数据”必将有利于我们的个性化教育,对教学和管理产生深刻影响。
随着“大数据”概念不断升温,教育行业如今也被认为是大数据可以大有作为的一个重要应用领域。几乎每家不甘落后的教育机构都在拥抱大数据,把大数据当作在激烈竞争中脱颖而出的秘密武器。
“其实,十几年前我们就在做数据仓库和数据挖掘。如今大数据这个概念兴起,主要基于两点,一是数据海量增长,处理样本数变多;二是物理运算能力增强,给处理海量数据带来可能。”在计算机博士、朗播网CEO杜昶旭看来,大数据既没有那么神秘,但也不像有些人想象得那么简单。
干扰性数据多 影响统计分析精度
杜昶旭认为,与其他行业的大数据相比,教育行业大数据目前数据量比较小,教育数据噪声也比较高。他解释,目前在线教育不像电商,用户数量庞大,数据可以累积到海量。而且教育垂直属性特别明显,大量数据会分流向不同垂直领域。
而不同垂直领域之间的数据融合度比较低,比如语文和数学的数据很难放到一起来分析;数据噪声简单讲指干扰性数据、无用数据,比如录播视频,用户行为很简单,有暂停、关闭、重看等等,但是这些操作的原因很多,并不一定是没看懂内容,所以干扰性数据非常多,数据统计分析的精度会受影响。
“此外,教育数据标准化程度非常低。数据大致可分为结构化数据和非结构化数据。以描述人一个人打比方,结构化数据就是人的身高、体重、性别;非结构化数据则可以是人的声音、照片等。”杜昶旭说,很多教育数据比如视频数据、语音数据等都是非结构化数据,数据模型构建会比较复杂,“所以,教育大数据需要解决数据量和数据处理的问题。”
优质技术分析 要有一流试题保障
互联网教育研究院院长吕森林也指出,教育大数据分析并不是有数据就可以,如果数据中有很多垃圾数据,那么分析得出的结论也可能是垃圾结论。
“比如题库类产品,一道题可能需要20多个指标来分辨学生各方面的情况,如区域、学科、难度、知识点等等,如果试题质量比较低,区分度比较低,那做大数据分析的意义就不会太大。此外,现在的大数据分析多集中在选择、判断等客观题,对带有步骤的主观题、作文等进行统计分析则有更高难度。”因此,题库的大数据分析看起来比较简单,但实际上技术、资金门槛都比较高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22