京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,在你我身“边”_数据分析师
在信息爆炸的大数据时代,要在纷繁杂乱的数据中理出有用信息的难度就像要重新拼起一张撕碎了的世界地图一样困难,而本书就如同地图背面的人像,告诉你如何认识大数据,并快速地拼回另一面的世界地图。
《大数据时代》由维克托·迈尔-舍恩伯格与肯尼斯·库克耶合著,前者被誉为“大数据时代的预言家”,是最早洞见大数据时代发展趋势的数据科学家之一,他不仅是众多世界知名企业信赖的信息权威与顾问,也是众多机构和国家政府高层的信息政策智囊;后者是《经济学人》数据编辑,也是CNN、BBC和NPR的定期商业和技术评论员之一。
早前火热的“云计算”、“物流网”只是露出来的冰山,而在冰面下就是以TB(240)、PB(250)、EB(260)乃至ZB(270)为计算量级的大数据。本书认为大数据是人们在大规模数据的基础上可以做到的事情,是在信息技术高度发达后,基于新工具下新的解决问题思路,而这些事情在小规模数据的基础上是无法完成的。大数据时代对我们的生活,以及与世界交流的方式都提出了挑战——推翻了向来我们做决定和理解现实的因果关系,转移到相关关系,即只需要知道是什么,而不需要知道为什么。
说到大数据,必须先了解之前的“小数据”时代。鉴于工具及方法的局限,之前只有教会或者政府才能做到大规模的数据采集并进行分析,但成本颇高并且时效性差。为解决问题,统计学家们发挥出作用,提出以随机采样的方式来替代全数据采集,不过其成功取决于样本选择的随机性,但实际上非常难以实现,一旦采样过程存在任何偏见,分析结果就会相去甚远。来到大数据时代,由于有了足够的数据处理和存储能力,加上最先进的分析技术,就能做到放弃样本分析这条捷径,选择收集全面而完整的数据,即采取全数据模式“样本=总体”。更多的数据带来了更杂的声音,但大数据允许不精确,并认为“执迷于精确性是信息缺乏时代和模拟时代的产物,只有接受不精确,才能打开一扇从未涉足的世界的窗户”。
大数据将引起思维的变革,并在思维变革的带动下,将产生新的商业变革,“量化一切”成为数据化的核心:不仅可以将文字变成数据,地理方位乃至情绪都可以数据化了,这便成了全新的视角——将世界看作信息,看作可以理解的数据的海洋,如何利用海量数据就成为新的商业竞争领域。数据创新的“六脉神剑”——数据的再利用、重组、扩展、折旧、废气和开放带来全新的商业模式,如何给数据估值将可能改变目前现有的会计准则。在大数据时代,价值链上的3大构成公司将把握住未来的进入门槛,传统公司如何在其中分杯羹将面临巨大挑战。
大数据带来不仅是各种便利及机会,同样也会让我们时刻都暴露在“第三只眼”之下:亚马逊监视我们的购物习惯,谷歌监视着我们的网页浏览习惯,而微博窃取着我们的社交关系网。为此,作者提出从4个方面对大数据时代进行管理变革:一是个人隐私的保护,从个人许可到让数据使用者承担责任;二是个人可以并应该为他们的行为而非倾向负责;三是培养专业的数据算法师群体以监察相关公司来维护公众信任;四是就像反对其他商业垄断一样反对数据垄断大亨。
书中丰富翔实的案例则是另一个看点。引言说到谷歌公司在2009年比美国国家疾控中心更早知道甲型H1N1流感的爆发时间、地域就抓住了读者的好奇心;苹果之父乔布斯是全球第一个拥有自身整个基因密码的人;美国Target百货公司在完全不和顾客沟通的情况下比女儿的父亲更早知道女儿怀孕的信息;印象最让我深刻的是,ReCaptcha项目在利用人们上网常遇到输入验证码的机会,将需要扫描文件中有待人工辨识和解释的模糊单词发给输入者输入确认,后来谷歌收购了该项目公司后用于其图书扫描项目,每年节省的人工费用就超过10亿美元。
尽管我在电脑打字时早已经悄悄地被“入侵”,却只有此时我才知道,我现在打出的每一个字后面,都藏着一双无形的数据抓取之手,它猜测并给出选择我还未打完拼音的下一个字——这就是大数据时代,就在你我身边。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10