京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS问卷分析---编码录入及描述统计详解_数据分析师
一、编码录入
调查分析问卷回收,在经过核实和清理后就要用SPSS做数据分析,首先的第一步就是把问题编码录入。要根据问卷问题的不同定义变量。定义变量值得注意的两点:1、区分变量的度量,其中Scale是定量、Ordinal是定序、Nominal是指定类;2、注意定义不同的数据类型。
各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,现详细举例介绍如下:
1、单选题:答案只能有一个选项
例一、当前贵组织机构是否设有面向组织的职业生涯规划系统?
A有 B 正在开创 C没有 D曾经有过但已中断
编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。
录入:录入选项对应值,如选C则录入3
2、多选题:答案可以有多个选项,其中又有项数不定多选和项数限定多选。
(1)方法一(二分法):
例二、贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示考虑在内。
A月薪员工 B日薪员工 C钟点工
编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0” 未选,“1” 选。
录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。
(2)方法二(多重分类法):
例三、你认为开展保持党员先进性教育活动的最重要的目标是那三项:
1( ) 2 () 3( )
A、提高党员素质 B、加强基层组织 C、坚持发扬民主
D、激发创业热情 E、服务人民群众 F、促进各项工作
编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。
3、排序题: 对选项重要性进行排序
例四、您购买商品时在 ①品牌 ②流行 ③质量 ④实用 ⑤价格 中对它们的关注程度先后顺序是(请填代号重新排列)
第一位 第二位 第三位 第四位 第五位
编码:定义五个变量,分别可以代表第一位~第五位,每个变量的Value都做如下定义:“1” 品牌,“2” 流行,“3” 质量,“4” 实用,“5” 价格
录入:录入的数字1、2、3、4、5分别代表五个选项,如被调查者把质量排在第一位则在代表第一位的变量下输入“3“。
4、开放性数值题和量表题:这类题目要求被调查者自己填入数值,或者打分
例六 你的年龄(实岁):______
编码:一个变量,不定义Value值
录入:即录入被调查者实际填入的数值。
5、开放性文字题:
如果可能的话可以按照含义相似的答案进行编码,转换成为封闭式选项进行分析。如果答案内容较为丰富、不容易归类的,应对这类问题直接做定性分析。
二、问卷一般性分析
下面具体介绍SPSS中问卷的一般处理方法,操作以版本spss13.0为例 ,以下提到的菜单项均在Analyze主菜单下
1、频数分析:Frequencies过程可以做单变量的频数分布表;显示数据文件中由用户指定的变量的特定值发生的频数;获得某些描述统计量和描述数值范围的统计量。
适用范围:单选题(例一),排序题(例四),多选题的方法二(例三)
频数分析也是问卷分析中最常用的方法。
实现: Descriptive statistics……Frequencies
2、描述分析:Descriptives:过程可以计算单变量的描述统计量。这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。
适用范围:选择并排序题(例五)、开放性数值题(例六)。
实现: Descriptive statistics……Descriptives,需要的统计量点击按钮Statistics…中选择
3、多重反应下的频次分析:
适用范围:多选题的二分法(例二)
实现:第一步在Multiple Response……Define Sets把一道多选问题中定义了的所有变量集合在一起,给新的集合变量取名,在Dichotomies Counted value中输入1。第二步在Multiple Response……Frequencies中做频数分析。
4、交叉频数分析:解决对多变量的各水平组合的频数分析的问题
适用范围:适用于由两个或两个以上变量进行交叉分类形成的列联表,对变量之间的关联性进行分析。比如要知道不同工作性质的人上班使用交通工具的情况,可以通过交叉分析得到一个二维频数表则一目了然。
实现:第一步根据分析的目的来确定交叉分析的选项,确定控制变量和解释变量(如上例中不同工作性质的人是控制变量,使用交通工具是解释变量)。第二步选择Descriptive statistics……Crosstabs
三、简单图形描述介绍
在做上述频数分析、描述分析等分析时就可以直接做出图形,简单方便,同时也可以另外作图。SPSS的作图功能在菜单Graphs下,功能强大,图形清晰优美。现在把常用图简单介绍如下
1、饼图:又称圆图,是以圆的面积代表被研究对象的总体,按各构成部分占总体比重的大小把圆面积分割成若干扇形,用以表示现象的部分对总体的比例关系的统计图。频数分析的结果宜用饼图表示。
2、曲线图:是用线段的升降来说明数据变动情况的一种统计图。它主要表示现象在时间上的变化趋势、现象的分配情况和2个现象的依存关系等。
3、面积图:用线段下的阴影面积来强调现象变化的统计图。
4、条形图:利用相同宽度条形的长短或高低表现统计数据大小及变化的统计图。
四、问卷深入分析
除了以上简单的分析,spss强大的功能还可以对问卷进行深入分析,比如常用的有聚类分析、交叉分析、因子分析、均值比分析(参数检验)、相关分析、回归分析等。因为涉及到很专业的统计知识,下面只将个人觉得比较有用的方法的适用范围和分析目的简单做介绍:
1、聚类分析
样本聚类,可以将被调查者分类,并按照这些属性计算各类的比例,以便明确研究所关心的群体。比如按消费特征对被调查者的进行聚类。
2、相关分析
相关分析是针对两变量或者多变量之间是否存在相关关系的分析方法,要根据变量不同特征选择不同的相关性的度量方式。问卷分析中的多数用的变量都属于分类变量,要采用斯皮尔曼相关系数。
其中可以用卡方检验,其是对两变量之间是否具有显著性影响的分析方法。
3、均值的比较与检验
(1)Means过程:对指定变量综合描述分析,分组计算计算均值再比较。比如可以按性别变量分为男和女来研究二者收入是否存在差距。
(2)T 检验:
独立样本t检验用于不相关的样本是否开来自具有相同均值的总体的检验。比如,研究购买该产品的顾客和不购买的顾客的收入是否有明显差异。
如果样本不独立则要用配对t检验。比如研究参加职业培训后 工作效率是否提高。
4、回归分析
问卷分析中的回归分析常采用的是用离散回归模型,一般是逻辑斯蒂模型,解释一个变量对另一变量的影响具体有多大。比如,研究对某商品的消费受收入的影响程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16