京公网安备 11010802034615号
经营许可证编号:京B2-20210330
贵阳高新区大数据产业异军突起_数据分析师
今年2月,随着工业和信息化部批复同意贵州省创建“贵阳·贵安国家大数据产业发展试点示范区”,贵阳高新区正式启动总规划面积14.24平方公里的大数据产业园建设。贵阳高新区借助北京·贵阳创新驱动区域合作平台,抢抓全国生态文明示范城市和中关村国家自主创新示范区“两个国家级示范”高位对接的重大机遇,融合外来创新动力和内生发展动力,依托大数据产业抢占创新制高点,全力打造经济发展升级版。
未雨绸缪掘金大数据
2014年是贵阳备受关注的一年。随着贵阳明确将大数据产业作为发展战略,社会各界人士纷纷到贵阳高新区考察。华为、阿里巴巴、腾讯、戴尔、惠普、甲骨文等全球知名企业将目光聚焦于此,洽谈大数据产业投资合作事宜。
据悉,贵州省、贵阳市把大数据纳入新常态下打造经济发展升级版的重要战略部署,贵阳高新区充分发挥发展大数据产业的生态气候、能源、区位以及产业聚集等优势,按照高水平规划、高水平建设、高水平招商、高水平服务的总要求,全面提升园区总体规划,不断优化园区布局,为大数据产业项目落地创造良好条件。
目前,贵阳高新区已初步形成了“一廊三园、一带三城、八平台”的大数据产业发展布局。通过建设长岭路—白金大道大数据产业走廊,把该区金阳科技园、中关村贵阳科技园核心区南园科学城和北园大数据城有机连成一体,为大数据产业项目进驻创造良好的物理承载空间。同时,围绕打造云服务带,倾力建设大数据城、大健康城、未来教育城,重点打造大数据科技研发平台大数据云计算云服务、大数据创新创业、大数据市场交易、大数据人才支撑服务、大数据金融服务、大数据公共技术服务、大数据应用交流展示“八大平台”,完善大数据产业生态链和产业配套,夯实大数据产业发展的动力基础。
打造转型升级“贵阳模式”
从1992年获批成立到现在的“一区三片六园”,从依托“三线企业”发展高新技术产业到引领大数据、云计算等高新技术产业发展,贵阳高新区从开发建设走向产业升级再到创新驱动,历经多次创业积累和空间拓展,在新技术革命和产业变革时代,迎来了历史上最好的发展时机。在推动大数据产业发展过程中,贵阳高新区按照“四抓四促”(抓平台促开放、抓两头促中间、抓软件促硬件、抓产业促发展)的思路,采取引项目、搭平台、建通道、拓链条、促集聚等措施,加快数据中心、呼叫中心、云计算、高端制造、智慧城市建设,遵循云—端—网—应用—金融大数据的路径,进行大数据全产业链布局,以大数据引领转型升级,为西部地区高新区转型升级、创新驱动发展提供了经验借鉴。
——通过深化改革增强内生动力。作为贵阳市实施创新驱动发展战略、发展高新技术产业的主战场,贵阳高新区始终坚守发展和生态“两条底线”,围绕“高”、“新”、“转”做文章,全力抢占科技创新制高点,高瞻远瞩地选择大数据产业作为发展方向。面对新机遇、新挑战,贵阳高新区打破西部欠发达地区科技创新底气不足的传统思维,借助京筑创新驱动区域合作契机,用好“中关村要素”,探索形成发展大数据产业的数据资源开放与市场交易机制、智慧城市治理模式机制、大数据大众创业孵化机制等三个创新机制,走出一条推动西部欠发达地区经济发展和生态改善的双赢之路。
——通过开放合作提升创新能力。深入推进与北京市、长三角、珠三角等区域的合作,用好、用活“中关村要素”,通过开放来引进模式、引进技术、引进人才、引进理念,贵阳高新区实现了与先进发达地区的高位对接,推动大数据产业跨越式发展。同时,瞄准大数据前沿技术和应用,引入外部从事大数据应用研发和运营的创业团队、研究机构、产业组织落户,提升大数据创新资源聚集度。运用互联网思维,推行开放共享经济新模式,启动全域公共免费WiFi城市项目,聚集访客量和浏览量,实现“块上”数据的快速汇集,建设大数据交易平台,解决“数据孤岛”现象,推进数据开放、共享、集成和交互,通过对数据管理产生的价值实现大数据产业发展。
——通过大众创业挖掘发展潜力。顺应网络时代大众创业、万众创新的新趋势,以贯彻落实《国务院办公厅关于发展众创空间推进大众创新创业的指导意见》为契机,贵阳高新区全力加快互联网基础设施建设和众创空间建设,大力培育朗玛信息、博大智能终端、贵州天控、高新网用、翔明科技等本土互联网企业,重点支持新三线咖啡、创客Flex等创新创业孵化平台,营造良好的创新创业生态环境,激活科技创新能量,造就成千上万的大数据产业生力军。
——通过完善服务激发市场活力。改革政府的机构设置,打造新型服务型政府。贵阳高新区大力推行无纸化、移动式办公,搭建微信平台,开启“微政务”新时代,运用信息化手段提升服务群众和企业的能力,架起企业与政府的连心桥。运用大数据改善政府管理,建设“数据铁笼”,在全国率先实现政府数据资源的统一存储、集中管理、全面共享,行政审批和行政服务平均办理时限由22.6个工作日缩短到10.9个工作日。推行问题导向工作法,实行“问题征集、平台挂号、解决销号”,形成以问题倒逼督查、以督查倒逼落实的工作推进机制,全力为项目提供服务、解决企业实际问题。
大数据产业初现聚集效应
从去年开展“贵州·北京大数据产业发展”招商活动以来,贵阳高新区通过挖掘数据资源价值,集聚大数据创新要素,搭建大数据产业平台,发展大数据及关联产业,形成了国内首家大数据产业集聚区,成为西部地区高新区创新驱动发展的样板,取得了显著成效。
——产业生态初步形成。贵阳高新区按照“抓两头带中间”的思路,进行大数据全产业链布局,大力发展数据中心、呼叫中心、智慧城市、云计算、端制造等五大重点产业。2013年以来成功引进了中兴云计算基地、百度数据中心、新浪云基地、360数据中心、宽带资本云基地、富士康示范工厂、顶新国际集团云端总部及工业园、CEC中国电子信息产业基地等大数据项目,目前共有大数据及关联企业500余家,大数据产业生态体系初步形成。
创新要素快速集聚。贵阳高新区以大平台集聚高端要素,借助京筑创新驱动区域合作契机,全力打造中关村贵阳科技园核心区、展示区、引领区,通过建设国际人才城、大数据应用展示中心、云计算中心、中科院创新园等一批高端平台,夯实区域内生发展动力。2013年以来成功引进中国科学院软件研究所贵阳分部、首都科技条件平台贵阳合作站、北京技术市场贵阳服务平台、北化高科食品安全大数据研究院、北京大学—富士康大数据贵州研究中心等一批平台。目前,园区共集聚了100多家骨干科研平台、40多家科技服务机构、5万余名优秀科研人才,其中院士13人,中央“千人计划”专家6人,创新创业核心团队50余个。
——示范应用成效显著。贵阳高新区以大服务带动大应用,加快推进国家智慧城市试点、国家信息消费试点城市和信息惠民国家试点城市建设,实现大数据在政府治理、产业发展、民生改善等多个领域的广泛应用。把大数据应用于城市治理,推广“952”微超市、阳光水超市、出租车智能终端应用,加强“块数据”形成和应用,开展城市“网格化”管理,推行区域性电子商务服务中心和社区电子商务模式,促进线上市场与线下市场的互动发展。把大数据全面植入大健康产业,围绕“检、疗、康、云、学、造”发展医疗大健康产业,全面推进大健康城建设。目前,食品安全云、电子商务云、社区服务云、智慧农业云、智能交通云、医疗健康云、教育云、旅游云、动漫云、金融云、水利云、媒体云、环保云等“云”企业已成功落户,“云上贵州、数聚贵阳”发展态势正在形成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12