京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在现实世界中的应用与实践_数据分析师
日前,IBM全球企业咨询服务部的全球信息管理负责人Michael Schroeck 表示:“大多数企业都已经认识到‘大数据’改善决策流程和业务成效的潜能,但他们却不知道该如何入手。调查显示,各行各业、全球各地的组织都已经开始采取一种注重实效的方式开展‘大数据’工作。虽然这些组织大多还处于早期接受阶段,但其中的佼佼者已经开始从‘大数据’项目中获得巨大的价值。”
赛德商学院管理研究员Janet Smart说道:“赛德商学院正与牛津大学各院系的学者共同开发和支持相关课程及研究项目,我们将把世界一流的‘大数据’分析和应用专长汇集到教学和研究内容之中。”
实践“大数据”的五大驱动因素
根据一项名为《分析:大数据在现实世界中的应用》调查显示,各类组织目前开展的大部分“大数据”项目都旨在改善客户体验,贴近客户是大部分组织实践“大数据”的首要任务。
除了“以客户为中心”(49%的受访者将其列为首要任务)之外,“大数据”在早期阶段还用于实现其他的职能性目标。近五分之一(18%)的受访者把优化运营列为首要目标。“大数据”的其它应用则主要集中在风险和财务管理(15%)、实现新业务模式(14%)以及员工协作(4%)方面。
内部数据:“大数据”的主要来源
超过一半的受访者把内部数据视为“大数据”的主要来源。这表明企业正在采取一种注重实效的方式开展“大数据”工作,也显示出其内部系统中仍有巨大的价值尚未得到开发。
内部数据是组织所能获得的最成熟、最易于理解的数据。这些数据是通过多年的企业资源规划、主数据管理、商业智能应用和其它相关工作收集整理而来,并经过了整合和标准化。利用分析技术解读这些来自客户交易、业务往来、事件和电子邮件的内部数据能够为组织提供有价值的洞察。
外部数据:尚未得到充分利用
然而,在所有推行“大数据”项目的组织中,目前正在对社交媒体等外部数据源进行数据收集和分析的组织还不到一半。
其中一个原因是很多组织难以应对和驾驭某些数据类型所固有的不确定性,例如天气、经济、或者社交网络所反映的人的情绪和真实想法。对于能否相信网络上的评论、意见、微博消息以及其他形式的自由言论,受访者在调查中提出了质疑。虽然存在不确定性,但社交媒体数据中仍然蕴藏着宝贵的信息。组织必须认识并驾驭数据的不确定性,并了解这些数据应该如何为己所用。
社交媒体和其它外部数据源未得到充分利用的另外一个原因就是技能缺口。对大部分组织来说,掌握先进的新型数据分析能力仍然是从“大数据”中获得价值的重大挑战,比如文本、传感器数据、地理空间数据、音频、图像和视频这样的非结构化数据和流数据。在此项调查中,只有25%的受访者表示自己具备分析高度非结构化数据的能力。
“大数据”采用情况
四分之三的受访者(76%)目前正在开展“大数据”项目开发工作,但报告证实,大部分受访者(47%)当前仍处于早期规划阶段,但同时也有28%的受访者正在开发试点项目或已经实施了两项甚至多项“大数据”解决方案。还有近四分之一(24%)的受访者尚未着手开展“大数据”活动,并且还在研究大数据对其组织究竟有何益处。
显而易见,“大数据”将带来蓬勃商机。近三分之二(63%)的受访者表示,合理运用数据并部署分析为其组织创造了竞争优势。在此次调查中,提及“竞争优势”的受访者比例与2010年IBM调查相比增加了70%(2010年比例为37%)。
分析:实践“大数据”的核心能力
如今,实践“大数据”的大部分组织都是从运用核心分析能力分析结构化数据入手的,例如查询和报告(91%)以及数据挖掘(77%)。有三分之二的受访者表示其所在组织采用了预测建模技术。但“大数据”也要求组织具备分析半结构化和非结构化数据的能力,其中包括各种全新的数据类型。
在超过一半的“大数据”项目中,受访者表示其所在组织采用了先进技术来分析自然状态的文本,例如呼叫中心对话内容的文字记录。这些分析技术包括解释和理解细微的语言特征,例如情绪、俚语和意图。此类数据可以帮助企业(例如银行和电信服务提供商)了解客户当前的情绪状态,并获得能够直接用于推动客户管理战略的宝贵洞察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27