京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代媒体应创新求变_数据分析师
大数据革新着社会化媒体乃至整个新闻传播业,加速着媒体融合发展的态势。无论是传统媒体还是新媒体,如果能顺势而动,抓住大数据的机遇并将其打造成核心竞争力,将在传媒市场中占据一片蓝海并在未来竞争中掌握先入为主的优势
如今,社交网站、微博、微信等社会化媒体已深刻影响着人们的日常生活和工作,随之产生的“数字足迹”潜藏着个人的情感、喜好、生活习惯,而汇聚人们大量数字“足迹”的社会化媒体的蓬勃发展为大数据时代的到来提供了强大的推动力。与此同时,大数据也革新着社会化媒体乃至整个新闻传播业,加速着媒体融合发展的态势。
所谓“大数据”,就是指需要处理的信息量过大,已超出一般电脑在处理数据时使用的内存量,需要改进处理数据的工具。大数据并非简单的海量数字,而是需要新处理模式进行挖掘分析、具有预测性和决策力的高增长率信息资产。
大数据时代,给新闻传播业带来了不小的挑战。比如,受众信息需求被大数据刷新,但现有新闻生产模式和机制难以快速有效处理海量数据;新闻传播业尚未形成较为成熟的报道逻辑来平衡数据的“去故事化”与新闻报道人性化诉求,容易陷入肤浅层面的同质化竞争;具备数据挖掘、分析能力的新闻传播人才短时间内难以得到足量补给;在传播日益精准化、个性化的大势下,粗放型、广种薄收的商业模式难以为继,跨界者的挑战与竞争与日俱增。
但是,重重困境中也孕育着勃勃生机。无论是传统媒体还是新兴媒体,如果能顺势而为,抓住大数据的机遇并将其打造成核心竞争力,将在传媒市场中占据一片蓝海并在未来竞争中掌握先入为主的优势。当然,这是需要提前做好一些功课的。
其一,增强“数据为主、服务为王”的数据理念与思维。缺少数据资源,无以谈产业;缺少数据思维,无以言未来。大数据时代,传统媒体与新媒体应居安思危、取长补短,不仅将数据思维贯穿于新闻生产中,让数据说话,也贯穿于传媒经营中,让数据发挥效益。
其二,变革现有报道结构与逻辑。大数据时代,深度报道仍然是媒体的主要追求,但与以往建立在个体记者调查、采访能力基础上的调查性报道不同,未来越来越多的深度报道将是基于大型数据的挖掘与分析实现的、对新闻事实的深度揭示与解析。也就是说,趋势预测性新闻和数据驱动型新闻的报道分量将大大增加。因此,新闻传播业应加强上述两方面报道的力度,让大数据走出财经、体育等小范围应用,走向更加广阔的领域。
其三,密切与高校合作培养数据人才队伍。大数据时代的新闻传播业人才至少需要具备多种能力:挖掘、整合大数据的能力;发掘大数据背后新闻价值的能力;进行精确、快速、实时传播的能力等。人才素质的提升仅依靠传媒机构单方之力难以完成,高校新闻传播教育理念与体制也需及时变革跟上步伐。
其四,加强跨界合作补齐自身短板。新闻传播业要想克服自身在硬件和技术方面的短板,必须跨界合作、借力发展,让科技、智能、金融协同发力,把握利益价值链多重环节,将新闻传播与其他服务适时捆绑,收到最佳反馈效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31