
定期进行科学的数据分析,是门店负责人掌握门店经营方向的重要手段。
门店经营指标数据分析
1、销售指标分析:主要分析本月销售情况、本月销售指标完成情况、与去年同期对比情况。通过这组数据的分析可以知道同比销售趋势、实际销售与计划的差距。
2、销售毛利分析:主要分析本月毛利率、毛利额情况,与去年同期对比情况。通过这组数据的分析可以知道同比毛利状况,以及是否在商品毛利方面存在不足。
3、营运可控费用分析:主要是本月各项费用明细分析、与去年同期对比情况,有无节约控制成本费用。这里的各项费用是指:员工成本、能耗、物料及办公用品费用、维修费用、存货损耗、日常营运费用(包括电话费、交通费、垃圾费等),通过这组数据的分析可以清楚的知道门店营运可控费用的列支,是否有同比异常的费用发生、有无可以节约的费用空间。
4、坪效:主要是本月坪效情况、与去年同期对比。“日均坪效”是指“日均单位面积销售额”,即:日均销售金额÷门店营业面积。
5、人均劳效:主要是本月人均劳效情况、与去年同期对比。“本月人均劳效”计算方法:本月销售金额/本月工资人数。
6、盘点损耗率分析:主要是门店盘点结果简要分析,通过分析及时发现门店在商品进、销、存各个环节存在的问题。
7、门店商品库存分析:主要是本月平均商品库存、周转天数,与去年同期对比分析。通过该组数据的分析可以看出门店库存是否出现异常,特别是否存在库存积压现象。
商品经营数据分析
1、便利店经营商品目录执行情况总结分析:主要是本店执行商品目录情况与经营业态主力商品情况及新品引进情况、淘汰商品是否进行及时清退。便利营运管理分中心每月1 日会将最新目录主力商品货号、目录新引进商品货号、目录淘汰商品货号发至各门店邮箱,门店根据相关货号查询出经营情况,特别是主力商品、新引进商品经营情况,以及淘汰商品门店有没有及时清退。通过这组数据的分析可以了解门店是否按照商品目录的调整进行了门店的商品结构调整。
2、商品动销率分析:主要是本月商品动销品种统计、动销率分析、与上月对比情况。月经营总品种数查询方法:进入百年系统“进销存分析”查询出本月进销存数据,在查询出门店经营的总品种数后,同样在该模块可以将动销品种数过滤出来,商品动销率计算公式为:动销品种数÷门店经营总品种数*100。滞销品种数:门店经营总品种数-动销品种数,即可得出。通过此组数据及具体单品的分析,可以看出门店在商品经营中存在的问题及潜力。
3、商品品类(3级)分析:主要是:门店本月各品类销售比重及与去年同期对比情况,门店本月各品类毛利比重及与去年同期对比情况。门店需对本月所有(3级)品类销售及毛利情况,特别是所有销售下降及毛利下降的品类进行全面分析,并通过分析找出差距,同时提出改进方案。
4、本月商品引进分析:主要是引进商品产生销售、毛利的分析。这里的引进商品需要门店日常对新引进商品建档,并跟踪分析引进商品的动销率、适销率、销售额以及毛利状况,同时分析这些引进商品是否对门店销售业绩的提升作了贡献、是否有引进不对路的商品存在,并在以后的工作中不断优化调整。
5、特价商品业绩评估:主要是特价商品品种数执行情况,特价商品销售情况、占比情况及与前期销售对比情况分析。“特价商品与前期销售对比分析”即将本档期特价商品的销售情况与特价执行前相同天数的销售情况进行对比分析(特价档期的执行天数为14 天或21 天)。通过以上这组数据的分析可以看出门店特价产生的效果以及门店在特价商品经营中存在的问题。
6、客流量、客单价分析:主要指本月平均每天人流量、客单价情况,与去年同期对比情况。这组数据在分析门店客流量、客单价时特别要注重门店开始促销活动期间及促销活动前的对比分析,促销活动的开展是否对于提高门店客流量、客单价起到了一定的作用。
其实,在日常工作中还有一些数据需要门店负责人分析,但无论哪方面数据,分析只是一个开始,关健是能够找出门店存在的问题及可以挖掘的潜力,指导如何开展下一步工作才是最重要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07