
趋势线
线性
线性趋势线是适用于简单线性数据集的最佳拟合直线。如果数据点构成的图案类似于一条直线,则表明数据是线性的。线性趋势线通常表示事物是以恒定速率增加或减少。
对数
如果数据的增加或减小速度很快,但又迅速趋近于平稳,那么对数趋势线是最佳的拟合曲线。对数趋势线可以使用正值和负值。
多项式
多项式趋势线是数据波动较大时适用的曲线。它可用于分析大量数据的偏差。多项式的阶数可由数据波动的次数或曲线中拐点(峰和谷)的个数确定。二阶多项式趋势线通常仅有一个峰或谷。三阶多项式趋势线通常有一个或两个峰或谷。四阶通常多达三个。
乘幂
乘幂趋势线是一种适用于以特定速度增加的数据集的曲线,例如,赛车一秒内的加速度。如果数据中含有零或负数值,就不能创建乘幂趋势线。
指数
指数趋势线是一种曲线,它适用于速度增减越来越快的数据值。如果数据值中含有零或负值,就不能使用指数趋势线。
移动平均
移动平均趋势线平滑处理了数据中的微小波动,从而更清晰地显示了图案和趋势。移动平均使用特定数目的数据点(由“周期”选项设置),取其平均值,然后将该平均值作为趋势线中的一个点。例如,如果“周期”设置为 2,那么,头两个数据点的平均值就是移动平均趋势线中的第一个点。第二个和第三个数据点的平均值就是趋势线的第二个点,依此类推。
趋势线是数据趋势的图形表示形式,可用于分析预测问题。这种分析又称为回归分析。通过使用回归分析,可以将图表中的趋势线延伸至事实数据以外,预测未来值。例如,前面的图表使用预测未来四个季度的简单对数趋势线,清楚地表示未来的收入增长趋势。
那么,您可能会想:这些趋势线的可靠性有多大?答案涉及一个叫做 R 平方的概念 — 或者,更具体地说,是趋势线的 R 平方值(谈到数学了)。R 平方值是一个神奇的数字 — 在此情况下,是介于 0 和 1 之间的数字。
当趋势线的 R 平方值为 1 或者接近 1 时,趋势线最可靠。如果您用趋势线拟和数据,Excel 会根据公式,自动计算它的 R 平方值。如果您需要,还可以在图表中显示该值。请注意,特定类型的数据具有特定类型的趋势线。要获得最精确的预测,为数据选择最合适的趋势线非常重要。
线性趋势线:增长或降低速率比较稳定
对数趋势线:增长或降低幅度-开始比较快,逐渐趋于平缓
多项式趋势线:增长或降低的波动较多
乘幂趋势线:增长或降低的速度持续增加、且增加幅度比较恒定
指数趋势线:增长或降低的速度持续增加、且增加幅度越来越大
线性:线性趋势线是适用于简单线性数据集合的最佳拟合直线。如果数据点的构成的趋势接近于一条直线,则数据应该接近于线性。线性趋势线通常表示事件以恒定的比率增加或减少。
对数:如果数据一开始的增加或减小的速度很快,但又迅速趋于平稳,那么对数趋势线则是最佳的拟合曲线。
多项式:多项式趋势线是数据波动较大时使用的曲线。多项式的阶数是有数据波动的次数或曲线中的拐点的个数确定,方便的判定方式也可以从曲线的波峰或波谷确定。二阶多项式就是抛物线,二阶多项式趋势线通常只有一个波峰或波谷;三阶多项式趋势线通常有一个或两个波峰或波谷;四阶多项式趋势线通常多达3个。当然多项式形式的不定积分公式比较简单,求此类曲线下面积比较容易。
乘幂:乘幂趋势线是一种适用于以特定速度增加的数据集合的曲线。但是如果数据中有零或负数,则无法创建乘幂趋势线。
指数:指数趋势线适用于速度增加越来越快的数据集合。同样,如果数据中有零或负数,则无法创建乘幂趋势线。
移动平均:移动平均趋势线用于平滑处理数据中的微小波动,从而更加清晰地显示了数据的变化的趋势。(在股票、基金、汇率等技术分析中常用)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15