京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据更是一种技术性战略资源_数据分析师
创新驱动发展战略是广东经济发展的“核心战略”和“总抓手”,科技创新是创新驱动的核心。大数据技术正在带来一次革命,大数据不仅意味着海量、多样、迅捷的数据处理,更是一种新的生产要素、一种创新资源和一种新的思维方式。大数据可以从产业结构、传统制造业升级、商业组织、“互联网+”和“大众创业,万众创新”等方面影响经济增长方式,助推创新驱动发展。
大数据技术,绝不仅仅是信息技术领域的变革,更是一种技术性战略资源,它使各种物质生产要素因新技术的介入而提高创新能力,形成内生性增长。
一、作为一种新的生产要素,大数据技术促进经济结构转型
大数据推动经济增长的积极作用,不仅意味着更高水平的生产力,还意味着经济结构的转型。
其一,与大数据时代对应的经济结构是智能经济。智能经济是以人脑智慧、电脑网络和物理设备为基本要素构成的经济结构和增长方式。大数据时代必将催生很多创新产业,重构甚至颠覆某些行业传统的产业链。
其二,大数据可推动突破性技术的研发,促进企业创新,改变产业格局。大数据的核心是预测,精准预测建立在对大量结构性和非结构性数据进行相关性分析的基础上。企业可以利用大数据研发其他领域的专业技术,为企业技术创新提供广阔空间,而这些新技术具有突破性,拥有改变整个产业格局的潜力。
其三,大数据服务渗透到传统行业,推动传统产业升级
大数据的应用对产业结构优化具有积极影响。目前大数据最大的应用前景是在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍占据了GDP的大部分份额。大数据已经与社交媒体、电子商务、广告营销、金融等行业发生紧密的融合,专业化的大数据服务已开始渗透到农业、建筑、能源、体育、餐饮、音乐等传统行业,挖掘数据价值,改造和优化传统行业的企业管理、产品服务设计、商业模式等环节。这一趋势在未来将会得到进一步强化,并将极大推动传统产业的升级。
二、用大数据开启创业时代
大数据分析的好处是在海量样本的基础上使分析大数据的技术门槛降低。此外,大数据技术在萌芽阶段就是开源技术,无偿供给全世界的开发者使用,后续包括Hadoop等底层技术均为开源性质,也没有任何专利门槛。在舍恩伯格看来,“算法”可撬动大数据的创业时代。也就是说,只需要拥有对于数据分析的思路也即一套“算法”,创业可以有很多新的可能。首先,你不需要是统计学家、工程师或者数据分析师,就可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。其次,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。第三,大数据服务有利于创业公司的涌现。订阅式定价模式是未来大数据服务的方向,即顾客无需维护硬件、电源和工程维修资源,服务完全根据顾客的需要而定:顾客有需要时,就可以使用更多功能;不需要时,功能就会减少。大数据服务的优势在于,顾客只为使用的东西消费。这尤其对创业公司有利,它们可以避免高昂的先期管理服务器和存储基础设施的投入。
三、作为一种新的思维方式,大数据思维引发科研方式的变革,促进科技创新能力的提高
过去我们认识世界的方式主要是通过“因果关系”,现在又多了一个方法—“相关关系”。大数据分析形成的“相关关系”为我们认识世界提供了一种新方法,引起科研方式的深刻变革,形成创新的新动力。
大数据技术的一个重大意义在于其能够影响科学研究本身的发展,使科学从过去的假设驱动型转化为数据驱动型。传统科研方法大都采用假设和验证的方法来分析问题产生的原因,进而寻求解决途径。应用大数据技术,人们开展科学研究不再是从提出自己的假设出发,而是先进行数据分析,然后再提出科学假设。大数据时代,知识技术创新模式正在从这种求因果向重相关发生转变,各领域的科研人员可以充分利用大数据快速挖掘事物间的相关性,预测事物发展的方向和趋势,从而实现知识技术创新。
对许多科学与工程学科领域而言,大数据技术能推动大学和工业实验室的基础研究,能加快取得新发现的速度。在推动信息技术的进步上,大数据技术更是起到重要的直接作用。为了应对大数据技术提出的挑战,科学家和工程师们必须要在信息技术领域作出重大创新:需要开发能以更高的速度处理如此复杂的海量数据的高性能计算技术;要求数学家和统计学家开发能够分析这些数据的新算法;要求数据分析专家运用新的技术从数据中“萃取”更大的、甚至意想不到的价值。
四、数据开放激发社会的创新活力
数据开放,可充分利用蕴藏着的社会能量,调动大众的智慧。数据是知识生产和创新的资源,通过互联网开放数据,就是将原来由部分社会精英垄断的知识和创新资源,开放给大众,进一步调动大众智慧,推动大众创新。每个人贡献一点点,大数据就可能还原事件的真相,或者推动某种创新。例如,开源项目、开源社区、开放性创新联盟组织的兴起,有效降低了产业技术的壁垒,推动更多的创业者介入。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22