 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		浅析图像大数据产业发展前景广阔_数据分析师
	
第1页:大数据亟须转化为研究支撑
原先设计50多人规模的沙龙活动,结果报名参会者多达300余人。主办方不得不更改会议室,以便容纳陆续到来的参会者。
这是4月15日中国科学院自动化所召开的“第二届中国图像视频大数据产业创新论坛”的现场情景。本次论坛由图像视频大数据产业技术创新战略联盟主办,中科院自动化所智能感知与计算研究中心承办。
“从参会人员的规模我们可以看出目前大家对图像视频大数据产业的关注。而这个论坛的召开,就是要为同仁们搭建平台,创造交流探讨的机会。”中国科学院院士、图像视频大数据产业技术创新战略联盟理事长谭铁牛在致辞中说。
大数据亟须转化为研究支撑
图像视频大数据是保障国家和公共安全的战略高技术、电子信息产业新的增长点,具有很大的发展潜力和广阔的应用前景。
专家介绍,预计到2017年,全球将有7万亿个传感器,届时如果按70亿人口的总量计算,人均将有1000个传感器。目前互联网图片的上传量每天多达数亿张。各种信息载体数据量的爆炸性突破造就了大数据的产生,人们的研究热情空前高涨。工信部发布的物联网发展规划明确提出要把图像视频智能分析以及海量数据存储、数据挖掘等作为关键技术创新工程。
“在全球图像视频数据爆炸式增长的今天,我国图像视频大数据产业迎来了重要的发展机遇,同时也面临重大挑战。”谭铁牛强调。
谭铁牛指出,经过多年发展,已经产生了海量的图像视频大数据。图像视频大数据是人工智能的突破口,是信息产业新的增长点。而能否把大数据优势转化为研究的支撑,不能光靠政府来解决。
据悉,图像视频大数据产业技术创新战略联盟希望团结、规范、引导我国图像视频大数据技术和产业的健康发展,以市场需求为导向充分发挥企业的主体作用,聚焦产业链创新,以技术项目研发为重点,健全组织机制,推进资源融合,建立利益共同体。
第2页:大数据产业应用蔚然成风
大数据产业应用蔚然成风
在该论坛上,百度研究院副院长余凯、北京航空航天大学教授李波分享了图像视频大数据产业的前沿科技和最新进展。论坛的两个讨论环节,则请到了14位企业、学术、投资等行业的专家学者,探讨图像视频大数据行业的商业模式、技术研发、产品设计、系统应用、标准测评的新方向、新动态、新挑战、新趋势。
论坛上,李波介绍,我们正处在“数字宇宙”中,2012年数据总量达2.84ZB,2014年数据总量达40ZB,他认为,数字应该为我们提供个性化、智能化的服务。
视频监控已经成为公安侦查的刚性需求,在传统线人、指纹、痕迹的基础上,视频监控成为公安第四大破案手段。视频监控破案占比已提高到25%~30%,并在不断提升。李波指出,99%的大案、要案的侦破需要视频监控信息。视频监控在公安侦查中价值重要,相关技术也在不断发展。
余凯以“从万物互联到万物智能”为题,介绍了百度在人工智能方面的发展成就。余凯称,人工智能不等于人工智慧,智能的本质是学习,是“感知—理解—决策”过程。5~10年后,所有设备都将成为智能设备(智能传感器、云端大脑、连接人与服务),都将成为机器人。
而数据银行的模式引起了与会者的高度关注。来自北京数据堂公司的代表介绍,该公司将各种大数据收集起来,就相当于成立了一个数据银行,对数据进行简单的“清洗”整理后,就可以向外提供数据出租等服务。
联盟引导产业健康发展
据介绍,我国图像视频大数据技术和产业发展正面临着诸多挑战,如政、产、学、研、用、资结合不紧密,企业和科研院所在国家层面的话语权较弱,自主创新较少,同质低价竞争普遍,国际化程度低,缺少权威平台以致市场无序竞争等。
为此,去年9月,图像视频大数据产业技术创新战略联盟在京成立。首批发起单位共29家,由百度、腾讯等19家企业,清华、北大等4所高校,以及中科院计算所、自动化所等6所研究院所组成。而今,“联盟在广大成员单位的支持和共同努力下,各项工作都在稳步向前推进,联盟的影响力也日益扩大。”谭铁牛说。
据介绍,联盟今后将致力于推动我国图像视频大数据产业技术创新、标准制定、测评认证、交流合作、宣传推广、人才培养,打造中国图像视频大数据领域政、产、学、研、用、资多赢的品牌产业平台。
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22