
企业互联网时代 大数据管理的挑战与建设方针
近日,用友集团iUAP中心召开媒体沟通会,就企业面临的数据管理挑战,分享了用友对企业大数据分析关键特性与建设原则的看法,并阐述了用友大数据产品“用友BQ商业分析平台”的特点与价值。笔者就用友网络科技股份有限公司助理总裁兼集团iUAP中心副总经理谢东的分享,对企业互联网时代大数据处理与分析面临的挑战与建设方针进行了整理。
用友BQ(Business Quotient)是基于UAP平台的商业分析平台和应用套件。它是一个综合的商业分析平台产品和工具集,能够帮助企业将各类数据进行整合分析,并可通过查询、报表、报告、多维分析、仪表板、移动分析、嵌入式分析等丰富的可视化分析和展现方式为客户提供灵活直观的交互分析能力和信息展现能力。
谢东在会上表示,企业互联网化正在迅速渗透到企业以及企业所处产业链和生态圈,借助互联网能力企业可以更容易与前端供应商、服务商,包括后端的客户、最终客户建立密切的联系。在此过程中,新业务模式如供应链优化、智能制造、产业链协同、电子商务以及电子商务里细分的B2B、B2C、O2O等新业务模式正在不断兴起,并迅速发展。这个过程中,企业数字化过程得到迅猛发展,同时越来越多的企业内部运营管理系统更快走向移动化、云化、数据化。
用友网络科技股份有限公司助理总裁兼集团iUAP中心副总经理谢东
企业数据发展变革与挑战
企业业务互联网化必然依赖企业内部各类元素的数字化,而企业对数字化信息处理能力是支撑企业互联网化的一个基础。企业各类数据的总和构成了企业在数字世界中一个完整的画像,企业大数据正成为企业的核心资产,企业需要从这些资产中获得价值,也驱动自己在数字化社会中得到不断的发展。
随着企业业务外延从企业内部不断向外部、向企业所处的产业链和生态圈扩展,企业的数据视野也越来越宽,从主要关注企业内部数据,已经延伸到关注社会数据,包括交易的数据、人工合成的数据、机器的数据、社会网络的数据等在内的企业数据在不断被重新认识。
在进行这些海量数据管理时,企业面临很大的挑战。据IDC 2014年5月调查显示,72%的受访者认为当前数据的指数增长和复杂性是目前遇到最大的数据管理调整,38%的人希望通过一个单一的平台保护和管理自己所有的数据。
企业大数据管理构建要素及建设原则
面对这种挑战,用友iUAP认为企业为了让数据资产产生价值,必须要把收集到所有的数据真正管理好、利用好,大数据其实就是在多样的、大量的数据中快速获取信息的能力。现阶段用友认为企业大数据管理具备三大关键因素,企业市场要做好以下三个方面的事情,才有可能做好大数据的管理和应用。
第一,选择好自己的数据基础架构。企业数据基础架构变革的驱动力,最基本的驱动力来源于数据量的增长,以及数据类型的变化。此外,不同的企业需求不同,实时性、成本、数据增长的趋势可能也会影响数据基础架构的选择。如果企业面临是一个量级不大,结构化的数据,也许传统的关系数据库就可以解决;如果量级增大,10TB左右,可能原有的关系数据库不能满足,列式数据库是一个比较好的选择;当它的量级越发增大,类型越发增多的时候,需要考虑新型的NEW SQL、NO SQL,甚至有Hadoop这样的计算系统和数据存储系统。
第二,做好数据的管理工作,选择好数据管理的关键技术。企业的数据管理一般都会经历孤立系统、数据集、数据仓库和统一元数据的数据仓库等几个阶段。企业在数据建设过程中,初期很难从顶层把自己的整体元数据管理包括数据仓库规划做到位,更易于见效的方式是先做部门级应用或者是领域级的应用,后续逐步整合。
第三,数据应用建设,要把数据利用起来,才能真正产生价值。从分析应用来讲,分为四个部分:报表报告、交互分析、挖掘预测、决策自动化。其中交互分析涵盖的东西比较多,很多时候会把敏捷分析、自助分析、多维OLAP分析都放在这里面。总的来说,企业应该根据现今自身所处的阶段以及企业数据实际情况来规划后续的数据管理和分析应用的发展路线。
紧接着谢总分享了企业大数据分析建设原则。现阶段因为数据非常之大,所以难免会陷入为了收集数据和整理数据而做大数据建设的一种可能性。我们的原则:
第一,一定是业务目标驱动的。现在业务目标很好找,包括不同的领域,比方说提升财务收益或者优选供应链,比如说零售企业的定价和促销策略等等。
第二,自下而上的原则。在数据仓库上,建议采用以点带面的形式,没必要初始就做一个顶层的设计,可以先做一些领域级、部门级的应用,把数据建起来,多个数据集中以后可以快速见到效益。也就是现在逐渐迭代,螺旋式上升的一种发展路线。
第三,价值最大化的原则。现在数据分析技术很多,我们不应该只停留在简单的报表报告层面,至少应该做到把交互分析里面很多的技术应用起来。
第四,数据价值推向全员应用。全员应用比较好理解,现在决策非常快,单纯靠领导决策也不够,如果全员都可以收到数据的价值,可以在自己的范围内做快速决策,这也是互联网时代全员创新的概念。
基于以上分析与认识,用户数据平台产品具备以下关键特性。用友数据平台产品包括数据整合、分析加速、海量的数据处理,统计建模、挖掘和预测的支持等特性;用友BQ商业分析平台包括实时分析可视化、对大数据的支持、对移动分析的支持、对挖掘预测的支持、元数据的管理以及嵌入第三方系统的能力。
最后,谢东总结了用友大数据产品的客户价值。统一的数据平台可以提升企业管理能力,通过海量数据深度挖掘,可以深度洞察数据价值,并且通过技术性手段可以扩大企业数据边界,做到全面分析、智慧决策、实时分析、快人一步,通过移动分析可以扩大企业数据边界,做到全面分析、智慧决策、实时分析、快人一步,通过移动分析可以运筹千里之外。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18