京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业互联网时代 大数据管理的挑战与建设方针
近日,用友集团iUAP中心召开媒体沟通会,就企业面临的数据管理挑战,分享了用友对企业大数据分析关键特性与建设原则的看法,并阐述了用友大数据产品“用友BQ商业分析平台”的特点与价值。笔者就用友网络科技股份有限公司助理总裁兼集团iUAP中心副总经理谢东的分享,对企业互联网时代大数据处理与分析面临的挑战与建设方针进行了整理。
用友BQ(Business Quotient)是基于UAP平台的商业分析平台和应用套件。它是一个综合的商业分析平台产品和工具集,能够帮助企业将各类数据进行整合分析,并可通过查询、报表、报告、多维分析、仪表板、移动分析、嵌入式分析等丰富的可视化分析和展现方式为客户提供灵活直观的交互分析能力和信息展现能力。
谢东在会上表示,企业互联网化正在迅速渗透到企业以及企业所处产业链和生态圈,借助互联网能力企业可以更容易与前端供应商、服务商,包括后端的客户、最终客户建立密切的联系。在此过程中,新业务模式如供应链优化、智能制造、产业链协同、电子商务以及电子商务里细分的B2B、B2C、O2O等新业务模式正在不断兴起,并迅速发展。这个过程中,企业数字化过程得到迅猛发展,同时越来越多的企业内部运营管理系统更快走向移动化、云化、数据化。
用友网络科技股份有限公司助理总裁兼集团iUAP中心副总经理谢东
企业数据发展变革与挑战
企业业务互联网化必然依赖企业内部各类元素的数字化,而企业对数字化信息处理能力是支撑企业互联网化的一个基础。企业各类数据的总和构成了企业在数字世界中一个完整的画像,企业大数据正成为企业的核心资产,企业需要从这些资产中获得价值,也驱动自己在数字化社会中得到不断的发展。
随着企业业务外延从企业内部不断向外部、向企业所处的产业链和生态圈扩展,企业的数据视野也越来越宽,从主要关注企业内部数据,已经延伸到关注社会数据,包括交易的数据、人工合成的数据、机器的数据、社会网络的数据等在内的企业数据在不断被重新认识。
在进行这些海量数据管理时,企业面临很大的挑战。据IDC 2014年5月调查显示,72%的受访者认为当前数据的指数增长和复杂性是目前遇到最大的数据管理调整,38%的人希望通过一个单一的平台保护和管理自己所有的数据。
企业大数据管理构建要素及建设原则
面对这种挑战,用友iUAP认为企业为了让数据资产产生价值,必须要把收集到所有的数据真正管理好、利用好,大数据其实就是在多样的、大量的数据中快速获取信息的能力。现阶段用友认为企业大数据管理具备三大关键因素,企业市场要做好以下三个方面的事情,才有可能做好大数据的管理和应用。
第一,选择好自己的数据基础架构。企业数据基础架构变革的驱动力,最基本的驱动力来源于数据量的增长,以及数据类型的变化。此外,不同的企业需求不同,实时性、成本、数据增长的趋势可能也会影响数据基础架构的选择。如果企业面临是一个量级不大,结构化的数据,也许传统的关系数据库就可以解决;如果量级增大,10TB左右,可能原有的关系数据库不能满足,列式数据库是一个比较好的选择;当它的量级越发增大,类型越发增多的时候,需要考虑新型的NEW SQL、NO SQL,甚至有Hadoop这样的计算系统和数据存储系统。
第二,做好数据的管理工作,选择好数据管理的关键技术。企业的数据管理一般都会经历孤立系统、数据集、数据仓库和统一元数据的数据仓库等几个阶段。企业在数据建设过程中,初期很难从顶层把自己的整体元数据管理包括数据仓库规划做到位,更易于见效的方式是先做部门级应用或者是领域级的应用,后续逐步整合。
第三,数据应用建设,要把数据利用起来,才能真正产生价值。从分析应用来讲,分为四个部分:报表报告、交互分析、挖掘预测、决策自动化。其中交互分析涵盖的东西比较多,很多时候会把敏捷分析、自助分析、多维OLAP分析都放在这里面。总的来说,企业应该根据现今自身所处的阶段以及企业数据实际情况来规划后续的数据管理和分析应用的发展路线。
紧接着谢总分享了企业大数据分析建设原则。现阶段因为数据非常之大,所以难免会陷入为了收集数据和整理数据而做大数据建设的一种可能性。我们的原则:
第一,一定是业务目标驱动的。现在业务目标很好找,包括不同的领域,比方说提升财务收益或者优选供应链,比如说零售企业的定价和促销策略等等。
第二,自下而上的原则。在数据仓库上,建议采用以点带面的形式,没必要初始就做一个顶层的设计,可以先做一些领域级、部门级的应用,把数据建起来,多个数据集中以后可以快速见到效益。也就是现在逐渐迭代,螺旋式上升的一种发展路线。
第三,价值最大化的原则。现在数据分析技术很多,我们不应该只停留在简单的报表报告层面,至少应该做到把交互分析里面很多的技术应用起来。
第四,数据价值推向全员应用。全员应用比较好理解,现在决策非常快,单纯靠领导决策也不够,如果全员都可以收到数据的价值,可以在自己的范围内做快速决策,这也是互联网时代全员创新的概念。
基于以上分析与认识,用户数据平台产品具备以下关键特性。用友数据平台产品包括数据整合、分析加速、海量的数据处理,统计建模、挖掘和预测的支持等特性;用友BQ商业分析平台包括实时分析可视化、对大数据的支持、对移动分析的支持、对挖掘预测的支持、元数据的管理以及嵌入第三方系统的能力。
最后,谢东总结了用友大数据产品的客户价值。统一的数据平台可以提升企业管理能力,通过海量数据深度挖掘,可以深度洞察数据价值,并且通过技术性手段可以扩大企业数据边界,做到全面分析、智慧决策、实时分析、快人一步,通过移动分析可以扩大企业数据边界,做到全面分析、智慧决策、实时分析、快人一步,通过移动分析可以运筹千里之外。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22