
解读《大数据时代》:大数据时代的神话
地球人都知道我们处在大数据时代,或许地球人也都知道关于大数据时代最著名的一本书就是迈尔-舍恩伯格所著的《大数据时代》。
我本以为大数据这么高深的学问绝不是我们这样的屌丝能够理解或者使用的,所以一直对此书敬而远之,不敢阅读。不料周边谈论大数据的人越来越多,谈论《大数据时代》这本书的人也越来越多,似乎不读《大数据时代》,估计连屌丝都做不成了。所以斗胆请来《大数据时代》。一读,果然不懂,许多疑问。
何为大数据?
这是一个很令人困惑并且绝对屌丝的问题,平时都不好意思开口问别人,希望从书中得到答案。遗憾的是,迈尔大叔在书中就根本没有告诉我们什么是大数据,这对像我这样习惯在课堂里死记硬背的学生来说,就产生了轻微的智障:怎么似乎什么都是大数据。可要我记住哪一个却十分困难。
看完此书,我只能回答说大数据就是数据多数据大。可是这个回答似乎有明显的问题。迈尔大叔在书中就举了一个大数据的例子,这个大数据只有“4000”和“两小时”。
在解释大数据时代不需要精准性时,迈尔大叔这样写道:
“互联网上最火的网址都表明,它们欣赏不精确而不会假装精确。当一个人在网站上见到一个Facebook的“喜欢”按钮时,可以看到有多少其他人也在点击。当数量不多时,会显示像“63”这种精确的数字。当数量很大时,则只会显示近似值,比方说“4000”。这并不代表系统不知道正确的数据是多少,只是当数量规模变大的时候,确切的数量已经不那么重要了。另外,数据更新得非常快,甚至在刚刚显示出来的时候可能就已经过时了。所以,同样的原理适用于时间的显示。谷歌的Gmail邮箱会确切标注在很短时间内收到的信件,比方说“11分钟之前”。但是,对于已经收到一段时间的信件,则会标注如“两个小时之前”这种不太确切的时间信息。”
4000个“赞”或者两小时(120分钟)也是大数据?我开始崩溃了!
我想是不是迈尔大叔可能考虑到我们对过万的数字数不过来所以有意简化,挑选我们能够理解的“大数据”来说明他的论断。
指鹿为马是谓荒唐。可是,如果对马没有定义,那指鹿为马就无所谓了。
呵呵,迈尔大叔还真幽默。
何为大数据时代?
我读西洋人写的书,总是觉得读书时很爽,读完后基本记不住。读《大数据时代》也有同感。很多很多的大数据例子,读完合上书后基本上一个都记不住。不过迈尔大叔可能知道我的这个毛病,所以提纲挈领,总结了大数据时代的三大特征。这就是地球人都知道的大数据时代的三大特征:1)不是随机样本,而是全体数据;2)不是精准性,而是混杂性;3)不是因果关系,而是相关关系。
一本书,三句话,一个时代的特征!楚汉河界,泾渭分明,一目了然。
小数据时代是随机样本、精准性和因果关系,大数据时代是全体数据、混杂性和相关关系。
可是我的脑子就是转不过来,没法从迈尔大叔的三个简单扼要的特征总结中悟出大数据时代来。这个看上去忒简单的总结,其实真的很深奥。简直可谓深不可测!
一大堆的问题等着迈尔大叔来回答。
比如说,是不是大数据时代就不要随机取样分析了?小数据时代是否也有所谓的全体数据?比如说30年前互联网未流行前美国银行或保险公司拥有的数据是不是全体数据?怎样定义全体数据?谷歌、百度、FACEBOOK或者腾讯,哪个公司拥有所谓的全体数据?为什么有了全体数据分析就要完全抛弃随机样本分析?如果考虑到随机样本分析会影响到分析结果的精度,不是大数据时代不追求精度吗?
关于大数据时代不要精准性,我怎么也拐不过弯来。你说,大数据时代的老师教学生“2+2或许等于3.9”,公司会计记账错了也可以对老板理直气壮地说“现在是大数据时代了”,甚至到饭店吃饭付账也不要精准了....。.呵呵,这日子还让不让人活啊?!
还有有关因果关系和相关性的问题,这也要命!我一直认为人与猴子的根本区别在于人喜欢问个“为什么?”。原本两个猴子,一个不断好奇地问“为什么日落就要睡觉”,结果大脑不断进化变成了人;另一个只是看到日落就上树睡觉,结果至今还是猴子。现在好了,大数据时代不需要问“为什么”了,岂不苦了我们从猴子变人过程中长期培育起来的好奇心了。
因果关系与相关关系的区别,就是因果关系在相关关系上问了个”为什么“。
流传甚广的有关超市将啤酒与尿布一起卖的大数据例子。说是通过大数据分析发现,人们在买尿布时通常也会买啤酒,于是就将啤酒与尿布陈列在一起卖。
如果你生活在大数据时代,故事到此结束了。
如果你还好奇地想知道为什么人们买尿布时要买啤酒。呵呵,对不起,你和我一样还生活在小数据时代。
我们无疑生活在一个互联网的时代,这是一个充满海量数据的世界。数据的多种形式、数据的多种来源、数据之间的多种复杂的联系,都使我们这个世界变得更加神秘但也更加激动人心。这就是大数据时代。
对大数据时代的探索,犹如当年美国对西部的探险,充满许多传说和神话。《大数据时代》或许可能就是这样一本充满神话与传说的探险记。我们为之心动,但依旧要活在现实的生活中,现实生活中的那些规律依旧适用。
即使是大数据时代,我们依旧需要问”为什么“,我们依旧需要教会孩子“2+2=4”,我们甚至依旧要做随机样本分析。
大数据并没有改变我们现有社会的基本生活逻辑。
大数据时代,平常人,平常心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18