京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Spark会成为大数据分析的新里程碑_数据分析师
在年初于纽约举行的Spark Summit East大会上,Databrick成为了焦点所在,通过新发布的数据处理云服务,该公司力图将Spark与MapReduce及Hadoop系统划清界限。
经过本次大会,Spark在业界的逐渐普及已是不争的事实。Apache Spark是一个开源的大数据处理引擎,能够被用于解决各界面临的高难度问题:如何快速识别针对比特币网络的拒绝服务攻击?如何将车辆与物联网或互联网相连接?如何识别出那些极为隐秘的洗钱行为?
对于Spark的兴趣不仅仅局限于具有纯天然数字化基因的企业,或者提供Spark相关技术的厂商。诺华制药(Novartis)、有线电视网Comcast和高盛等公司也在会上为Spark唱起了赞歌。但是,本次Spark Summit与其说是一次会议,不如说是一次Databrick的专场演出。Databrick发布了商业版的Spark系统,并且撇清与Hadoop生态的任何关系 -- 既非敌人也不是朋友。Databrick这次发布的是基于云的Spark服务。
顺势而生
Databrick由加州伯克利大学AMP实验室团队所创建,即Apache Spark的开发者。自从诞生伊始,Spark就被拿来与MapReduce进行比较,MapReduce是Hadoop最初的数据处理引擎。MapReduce因其对大数据集的分布式处理能力而广受关注,但是也一直在效率方面饱受责难。MapReduce以批处理方式进行计算,无法很好地应对流处理模式(比如物联网项目)。而且,MapReduce没有内存计算的选项,每次计算后都要将结果写入外部存储,这使得迭代式的任务相当耗时。
MapReduce的种种缺陷,使得诸如Spark之类的新一代处理引擎应运而生。“MapReduce的设计始于15年以前,”Databrick的联合创始人Patrick Wendell表示:“而Spark则是基于当代最新的硬件,完全重新设计而成的。”
同时,Databrick实现了Spark与Hadoop环境的兼容,并坚信Spark将在大数据生态中扮演更重要的角色。“我认为Spark将凌驾于Hadoop之上,在更多的场景中发挥作用。目前,在很大程度上这一点已经成为现实。”Wendell说。
去年春季,Databrick与DataStax建立了合作伙伴关系,后者专注于提供NoSQL数据库Cassandra的商业版。去年秋天,Databrick发布了Databrick云,基于Amazon S3存储提供Spark环境,实现所谓的大数据即服务。由于在可用性方面受限,有传闻Databrick云最终将驻留在Google Compute Engine和微软Azure云上。与MapReduce不同,Databrick尽量让使用Spark的技术门槛降低,能够面向更为广泛的受众。比如,Databrick为用户提供了各种高级和低级的API接口 – 所谓高级接口,主要针对那些对数据科学或分布式系统不熟悉的用户,使之同样能从复杂的机器学习算法中受益。
应者云集
如果说本次Spark Summit East大会带来的影响,应该就是CIO们,或者更确切地说是那些一直追踪大数据技术发展的数据分析师们会认为Spark将是继Hadoop之后的新里程碑。Databrick宣称Spark大数据处理引擎将改变企业分析的形态(过去的情况是,诸如Cloudera一类的Hadoop提供商一直扮演着支撑的角色)。Databrick同样让与会者相信,即使那些“普通”(normal,先前举行的Hadoop World大会上,Cloudera使用了这个词)的公司,也能够从Spark中受益,比如诺华制药和Comcast,以及不那么有名的Automatic和Shopify公司。
对于Spark的赞美同样来自于其他与会者。Tresata的创始人和首席执行官Abhishek Mehta表示:“我认为Spark应对了当前大数据研究中的所有热点问题。”高盛的Matt Glickman表示,Spark代表了未来发展的方向,将成为大数据分析的通用工具。Alteryx(致力于为普通用户提供分析语言R和大数据分析能力)的首席运营官George Mattew则描述了在集成R和MapReduce时的遭遇。
“有人说,旧约中并没有对地狱的具体描述。”Mathew回忆到:“但是,当我们试图将R和MapReduce集成时,却有了切身体会。在引入其他通用的计算能力时,MapReduce的步伐是如此艰难。”
这听起来非常刺耳,曾经的大数据明星,如今被Spark的光芒所掩盖 – 至少在某些大数据信徒看来,事实就是如此。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01