京公网安备 11010802034615号
经营许可证编号:京B2-20210330
玩转大数据,其实是在挖掘人性需求_数据分析师培训
从今天起,做一个爱自己的人,观察自己,成全数据 。
今日资本的徐新女士当年准备投京东的时候,刘强东把后台ERP系统打开给徐新看,虽然销售额只有5000万元,但每个月增长10%,京东商城当时还没钱打广告,可老客户一年会上来3次,这几组数据足以证明,用户喜欢这个网站。这组数据的信息量和推演逻辑,足以覆盖一份花哨的项目故事PPT。
因为数据在说话,更因为用户行为累积成的数据信息足以挖掘出产品的可成长性、电商的趋势、盈利模式是否健康等核心信息。而大数据的来源其实是人,玩转大数据,其实是在挖掘人性需求。
大数据更接地气的解释是统计学(包含但不完全),但大数据应用需要从用户行为中摸出统计及定性和定向的脉络,最终形成有价值的信息,以指导产品设计、平台搭建、营销推广等实用策略。数据本身零散的,需要经过清洗、挖掘、组织、归纳,演变成有价值的信息,由此起到决策、佐证、指导的应用价值。
其实,大数据更深层的挖掘就是用户行为(人性)、用户需求(欲望)、转化(选择),把“我”升级成“我们”,换位思考一下行为和欲望,再进行性别、年龄、地域、收入、教育等等深度的信息挖掘,就能理解在纷繁复杂的人类与人性里,数据于此的息息相关了。说白了,大数据就是若干个“我”的存在,而大数据应用,就是在“我们”里挖掘信息,以洞察“我们”的需求,转化成商业模式,实现盈利。对“我们”的玩转,也是电商盈利模式不断升级的过程。
当微信、微博社交媒体成为用户黏度最高的产品时,基于社交圈的用户原始需求也最有效地形成有价值数据:
1、社交平台的信息分享对于个体用户有着强烈的需求煽动力,电商社交化立刻成为趋势。
2、用户的兴趣点、社交图谱与购买转化形成的时间规律、价格规律、敏感词规律,通过萃取可梳理出一套电商营销方法论,在恰当的时间、恰当的社交平台、以恰当的卖点投放恰当的产品广告,触达用户,形成精细化营销。
而这一系列大数据的有效信息萃取,都是来自若干个“我”。如果还在神乎其神地脱离“我”谈大数据,可以想见的是,没人气。
大数据是随人走的,但产品设计、平台搭建、营销推广,是随大数据应用走的,对人性洞察越犀利,在人与大数据之间的正向转化也就越乐观。电商资料库可以快速捕获、监控、分析用户行为,进行数字化生产和管理。
海量用户行为数据背后,隐藏的就是消费行为逻辑,什么样的广告用户最买单?不同区域的人购买习惯差异是什么?不同年龄与性别的人在不同时期都在消费什么?PC与移动的用户及用户行为差异是什么?这些复杂碎片化的信息,都能从数据中系统地萃取,形成一套方法论。
其本质,依然是在洞察“我”。每一个“我”都是孤立的碎片信息,但是通数据收集、挖掘、清洗、归纳,进行价值数据输出,“我”就升级成“我们”,“我们”就合力成海量需求,海量需求就成为有价值的数据包。通过精准分析、定位、投放,能够让产品设计、平台搭建、营销变得智能、精准、快捷、高效。尊重每一个“我”的存在,是大数据应用从人性及用户行为出发,挖掘有效信息的根本。
未来,数据收集和分析能力的强弱可能决定了企业的核心竞争力。当每一个个体成为大数据构成中的一分子的时候,把自己也作为一个用户样本,真实洞察自身需求和行为,也能从价值观和行为习惯中推理出相唿应的价值信息,放之“我们”中进行匹配和佐证,也算为大数据贡献一个样本了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29